
Logbot ETL User Guide – v2.0

© Logbot 2021 1

Logbot ETL User Guide

Logbot ETL User Guide – v2.0

© Logbot 2021 2

Contents
Introduction .. 4

Terminology ... 5

Logbot ETL User Interface .. 7

Building a DataFlow .. 9

Adding Components to the Canvas.. 10

Component Versions .. 18

Configuring a Processor ... 22

Configuring a Process Group ... 30

Parameters .. 34

Using Custom Properties with Expression Language .. 49

Controller Services... 56

Reporting Tasks ... 63

Connecting Components .. 67

Processor Validation .. 76

Site-to-Site ... 77

Example Dataflow ... 82

Command and Control of the DataFlow .. 83

Starting a Component .. 84

Stopping a Component ... 85

Terminating a Component’s tasks ... 86

Enabling/Disabling a Component .. 87

Remote Process Group Transmission .. 88

Navigating within a DataFlow ... 90

Component Linking ... 91

Component Alignment ... 92

Search Components in DataFlow... 95

Filters ... 96

Keywords ... 97

Monitoring of DataFlow .. 98

Anatomy of a Processor ... 99

Anatomy of a Process Group ... 101

Anatomy of a Remote Process Group .. 103

Queue Interaction ... 105

Summary Page ... 106

Historical Statistics of a Component.. 108

Templates ... 110

Logbot ETL User Guide – v2.0

© Logbot 2021 3

Creating a Template ... 111

Importing a Template ... 112

Instantiating a Template ... 113

Managing Templates .. 114

Data Provenance .. 115

Provenance Events ... 116

Searching for Events .. 117

Details of an Event ... 119

Replaying a FlowFile ... 121

Viewing FlowFile Lineage .. 122

Experimental Warning ... 125

Other Management Features .. 126

Build your first Dataflow ... 127

Logbot ETL components ... 128

Create a data flow .. 129

Learn about Logbot ETL processors.. 132

Work with data flow templates .. 135

Examples .. 138

ExecuteScript Processor... 139

Running SQL on FlowFiles using QueryRecord Processor .. 160

Logbot ETL User Guide – v2.0

© Logbot 2021 4

Introduction

Logbot ETL is a dataflow system based on the concepts of flow-based programming. It supports

powerful and scalable directed graphs of data routing, transformation, and system mediation logic.

Logbot ETL has a web-based user interface for design, control, feedback, and monitoring of

dataflows. It is highly configurable along several dimensions of quality of service, such as loss-

tolerant versus guaranteed delivery, low latency versus high throughput, and priority-based queuing.

Logbot ETL provides fine-grained data provenance for all data received, forked, joined cloned,

modified, sent, and ultimately dropped upon reaching its configured end-state.

Logbot ETL User Guide – v2.0

© Logbot 2021 5

Terminology

DataFlow Manager: A DataFlow Manager (DFM) is a Logbot ETL user who has permissions to add,

remove, and modify components of a Logbot ETL dataflow.

FlowFile: The FlowFile represents a single piece of data in Logbot ETL. A FlowFile is made up of

two components: FlowFile Attributes and FlowFile Content. Content is the data that is represented by

the FlowFile. Attributes are characteristics that provide information or context about the data; they are

made up of key-value pairs. All FlowFiles have the following Standard Attributes:

 uuid: A Universally Unique Identifier that distinguishes the FlowFile from other FlowFiles in

the system.

 filename: A human-readable filename that may be used when storing the data to disk or in an

external service

 path: A hierarchically structured value that can be used when storing data to disk or an

external service so that the data is not stored in a single directory

Processor: The Processor is the Logbot ETL component that is used to listen for incoming data; pull

data from external sources; publish data to external sources; and route, transform, or extract

information from FlowFiles.

Relationship: Each Processor has zero or more Relationships defined for it. These Relationships are

named to indicate the result of processing a FlowFile. After a Processor has finished processing a

FlowFile, it will route (or “transfer”) the FlowFile to one of the Relationships. A DFM is then able to

connect each of these Relationships to other components in order to specify where the FlowFile

should go next under each potential processing result.

Connection: A DFM creates an automated dataflow by dragging components from the Components

part of the Logbot ETL toolbar to the canvas and then connecting the components together via

Connections. Each connection consists of one or more Relationships. For each Connection that is

drawn, a DFM can determine which Relationships should be used for the Connection. This allows

data to be routed in different ways based on its processing outcome. Each connection houses a

FlowFile Queue. When a FlowFile is transferred to a particular Relationship, it is added to the queue

belonging to the associated Connection.

Controller Service: Controller Services are extension points that, after being added and configured

by a DFM in the User Interface, will start up when Logbot ETL starts up and provide information for

use by other components (such as processors or other controller services). A common Controller

Service used by several components is the StandardSSLContextService. It provides the ability to

configure keystore and/or truststore properties once and reuse that configuration throughout the

application. The idea is that, rather than configure this information in every processor that might need

it, the controller service provides it for any processor to use as needed.

Reporting Task: Reporting Tasks run in the background to provide statistical reports about what is

happening in the Logbot ETL instance. The DFM adds and configures Reporting Tasks in the User

Interface as desired. Common reporting tasks include the ControllerStatusReportingTask,

MonitorDiskUsage reporting task, MonitorMemory reporting task, and the StandardGangliaReporter.

Funnel: A funnel is a Logbot ETL component that is used to combine the data from several

Connections into a single Connection.

Logbot ETL User Guide – v2.0

© Logbot 2021 6

Process Group: When a dataflow becomes complex, it often is beneficial to reason about the

dataflow at a higher, more abstract level. Logbot ETL allows multiple components, such as

Processors, to be grouped together into a Process Group. The Logbot ETL User Interface then makes

it easy for a DFM to connect together multiple Process Groups into a logical dataflow, as well as

allowing the DFM to enter a Process Group in order to see and manipulate the components within the

Process Group.

Port: Dataflows that are constructed using one or more Process Groups need a way to connect a

Process Group to other dataflow components. This is achieved by using Ports. A DFM can add any

number of Input Ports and Output Ports to a Process Group and name these ports appropriately.

Remote Process Group: Just as data is transferred into and out of a Process Group, it is sometimes

necessary to transfer data from one instance of Logbot ETL to another. While Logbot ETL provides

many different mechanisms for transferring data from one system to another, Remote Process Groups

are often the easiest way to accomplish this if transferring data to another instance of Logbot ETL.

Bulletin: The Logbot ETL User Interface provides a sigLogbot ETLcant amount of monitoring and

feedback about the current status of the application. In addition to rolling statistics and the current

status provided for each component, components are able to report Bulletins. Whenever a component

reports a Bulletin, a bulletin icon is displayed on that component. System-level bulletins are displayed

on the Status bar near the top of the page. Using the mouse to hover over that icon will provide a tool-

tip that shows the time and severity (Debug, Info, Warning, Error) of the Bulletin, as well as the

message of the Bulletin. Bulletins from all components can also be viewed and filtered in the Bulletin

Board Page, available in the Global Menu.

Template: Often times, a dataflow is comprised of many sub-flows that could be reused. Logbot ETL

allows DFMs to select a part of the dataflow (or the entire dataflow) and create a Template. This

Template is given a name and can then be dragged onto the canvas just like the other components. As

a result, several components may be combined together to make a larger building block from which to

create a dataflow. These templates can also be exported as XML and imported into another Logbot

ETL instance, allowing these building blocks to be shared.

Logbot ETL User Guide – v2.0

© Logbot 2021 7

Logbot ETL User Interface

The Logbot ETL UI provides mechanisms for creating automated dataflows, as well as visualizing,

editing, monitoring, and administering those dataflows. The UI can be broken down into several

segments, each responsible for different functionality of the application. This section provides

screenshots of the application and highlights the different segments of the UI. Each segment is

discussed in further detail later in the document.

When the application is started, the user is able to navigate to the UI by going to the default address of

http://<hostname>:8080/ in a web browser. There are no permissions configured by default, so

anyone is able to view and modify the dataflow. For information on securing the system, see the

System Administrator’s Guide.

When a DFM navigates to the UI for the first time, a blank canvas is provided on which a dataflow

can be built:

The Components Toolbar runs across the top left portion of your screen. It consists of the components

you can drag onto the canvas to build your dataflow. Each component is described in more detail in

Building a DataFlow.

The Status Bar is under the Components Toolbar. The Status bar provides information about the

number of threads that are currently active in the flow, the amount of data that currently exists in the

flow, how many Remote Process Groups exist on the canvas in each state (Transmitting, Not

Transmitting), how many Processors exist on the canvas in each state (Stopped, Running, Invalid,

Disabled), how many versioned Process Groups exist on the canvas in each state (Up to date, Locally

modified, Stale, Locally modified and stale, Sync failure) and the timestamp at which all of this

information was last refreshed. Additionally, if the instance of Logbot ETL is clustered, the Status bar

shows how many nodes are in the cluster and how many are currently connected.

The Operate Palette sits to the left-hand side of the screen. It consists of buttons that are used by

DFMs to manage the flow, as well as by administrators who manage user access and configure system

properties, such as how many system resources should be provided to the application.

Status bar

Components toolbar

Operate bar

Navigate bar

Logbot ETL User Guide – v2.0

© Logbot 2021 8

On the right side of the canvas is Search, and the Global Menu. For more information on search refer

to Search Components in DataFlow. The Global Menu contains options that allow you to manipulate

existing components on the canvas:

Additionally, the UI has some features that allow you to easily navigate around the canvas. You can

use the Navigate Palette to pan around the canvas, and to zoom in and out. The “Birds Eye View” of

the dataflow provides a high-level view of the dataflow and allows you to pan across large portions of

the dataflow. You can also find breadcrumbs along the bottom of the screen. As you navigate into and

out of Process Groups, the breadcrumbs show the depth in the flow, and each Process Group that you

entered to reach this depth. Each of the Process Groups listed in the breadcrumbs is a link that will

take you back up to that level in the flow.

Logbot ETL User Guide – v2.0

© Logbot 2021 9

Building a DataFlow

A DFM is able to build an automated dataflow using the Logbot ETL UI. Simply drag components

from the toolbar to the canvas, configure the components to meet specific needs, and connect the

components together.

Logbot ETL User Guide – v2.0

© Logbot 2021 10

Adding Components to the Canvas

The User Interface section above outlined the different segments of the UI and pointed out a

Components Toolbar. This section looks at each of the Components in that toolbar:

Processor: The Processor is the most commonly used component, as it is responsible for data

ingress, egress, routing, and manipulating. There are many different types of Processors. In fact, this

is a very common Extension Point in Logbot ETL, meaning that many vendors may implement their

own Processors to perform whatever functions are necessary for their use case. When a Processor is

dragged onto the canvas, the user is presented with a dialog to choose which type of Processor to use:

In the top-right corner, the user is able to filter the list based on the Processor Type or the Tags

associated with a Processor. Processor developers have the ability to add Tags to their Processors.

These tags are used in this dialog for filtering and are displayed on the left-hand side in a Tag Cloud.

The more Processors that exist with a particular Tag, the larger the Tag appears in the Tag Cloud.

Clicking a Tag in the Cloud will filter the available Processors to only those that contain that Tag. If

multiple Tags are selected, only those Processors that contain all of those Tags are shown. For

example, if we want to show only those Processors that allow us to ingest files, we can select both the

files Tag and the ingest Tag:

Logbot ETL User Guide – v2.0

© Logbot 2021 11

Restricted components will be marked with a icon next to their name. These are components that

can be used to execute arbitrary unsanitized code provided by the operator through the Logbot ETL

REST API/UI or can be used to obtain or alter data on the Logbot ETL host system using the Logbot

ETL OS credentials. These components could be used by an otherwise authorized Logbot ETL user to

go beyond the intended use of the application, escalate privilege, or could expose data about the

internals of the Logbot ETL process or the host system. All of these capabilities should be considered

privileged, and admins should be aware of these capabilities and explicitly enable them for a subset of

trusted users. Before a user is allowed to create and modify restricted components they must be

granted access. Hovering over the icon will display the specific permissions a restricted

component requires. Permissions can be assigned regardless of restrictions. In this case, the user will

have access to all restricted components. Alternatively, users can be assigned access to specific

restrictions. If the user has been granted access to all restrictions a component requires, they will have

access to that component assuming otherwise sufficient permissions.

Clicking the "Add" button or double-clicking on a Processor Type will add the selected Processor to

the canvas at the location that it was dropped.

For any component added to the canvas, it is possible to select it with the mouse and move it

anywhere on the canvas. Also, it is possible to select multiple items at once by either holding down

the Shift key and selecting each item or by holding down the Shift key and dragging a selection box

around the desired components.

Once you have dragged a Processor onto the canvas, you can interact with it by right-clicking on the

Processor and selecting an option from the context menu. The options available to you from the

context menu vary, depending on the privileges assigned to you.

Logbot ETL User Guide – v2.0

© Logbot 2021 12

While the options available from the context menu vary, the following options are typically available

when you have full privileges to work with a Processor:

 Configure: This option allows the user to establish or change the configuration of the

Processor (see Configuring a Processor).

For Processors, Ports, Remote Process Groups, Connections and Labels, it is possible to open the

configuration dialog by double-clicking on the desired component.

 Start or Stop: This option allows the user to start or stop a Processor; the option will be either

Start or Stop, depending on the current state of the Processor.

 Enable or Disable: This option allows the user to enable or disable a Processor; the option

will be either Enable or Disable, depending on the current state of the Processor.

 View data provenance: This option displays the Logbot ETL Data Provenance table, with

information about data provenance events for the FlowFiles routed through that Processor

(see Data Provenance).

 View status history: This option opens a graphical representation of the Processor’s

statistical information over time.

 View usage: This option takes the user to the Processor’s usage documentation.

 View connections→Upstream: This option allows the user to see and "jump to" upstream

connections that are coming into the Processor. This is particularly useful when processors

connect into and out of other Process Groups.

 View connections→Downstream: This option allows the user to see and "jump to"

downstream connections that are going out of the Processor. This is particularly useful when

processors connect into and out of other Process Groups.

 Center in view: This option centers the view of the canvas on the given Processor.

 Change color: This option allows the user to change the color of the Processor, which can

make the visual management of large flows easier.

 Create template: This option allows the user to create a template from the selected

Processor.

 Copy: This option places a copy of the selected Processor on the clipboard, so that it may be

pasted elsewhere on the canvas by right-clicking on the canvas and selecting Paste. The

Copy/Paste actions also may be done using the keystrokes Ctrl-C (Command-C) and Ctrl-V

(Command-V).

Logbot ETL User Guide – v2.0

© Logbot 2021 13

 Delete: This option allows the DFM to delete a Processor from the canvas.

Input Port: Input Ports provide a mechanism for transferring data into a Process Group. When

an Input Port is dragged onto the canvas, the DFM is prompted to name the Port. All Ports within a

Process Group must have unique names.

All components exist only within a Process Group. When a user initially navigates to the Logbot ETL

page, the user is placed in the Root Process Group. If the Input Port is dragged onto the Root Process

Group, the Input Port provides a mechanism to receive data from remote instances of Logbot ETL via

Site-to-Site. In this case, the Input Port can be configured to restrict access to appropriate users, if

Logbot ETL is configured to run securely. For information on configuring Logbot ETL to run

securely, see the System Administrator’s Guide.

Output Port: Output Ports provide a mechanism for transferring data from a Process Group to

destinations outside of the Process Group. When an Output Port is dragged onto the canvas, the DFM

is prompted to name the Port. All Ports within a Process Group must have unique names.

If the Output Port is dragged onto the Root Process Group, the Output Port provides a mechanism for

sending data to remote instances of Logbot ETL via Site-to-Site. In this case, the Port acts as a queue.

As remote instances of Logbot ETL pull data from the port, that data is removed from the queues of

the incoming Connections. If Logbot ETL is configured to run securely, the Output Port can be

configured to restrict access to appropriate users. For information on configuring Logbot ETL to run

securely, see the System Administrator’s Guide.

Process Group: Process Groups can be used to logically group a set of components so that the

dataflow is easier to understand and maintain. When a Process Group is dragged onto the canvas, the

DFM is prompted to name the Process Group. The Process Group will then be nested within that

parent group.

Once you have dragged a Process Group onto the canvas, you can interact with it by right-clicking on

the Process Group and selecting an option from the context menu. The options available to you from

the context menu vary, depending on the privileges assigned to you.

Logbot ETL User Guide – v2.0

© Logbot 2021 14

While the options available from the context menu vary, the following options are typically available

when you have full privileges to work with the Process Group:

 Configure: This option allows the user to establish or change the configuration of the Process

Group.

 Variables: This option allows the user to create or configure variables within the Logbot ETL

UI.

 Enter group: This option allows the user to enter the Process Group.

 It is also possible to double-click on the Process Group to enter it.

 Start: This option allows the user to start a Process Group.

 Stop: This option allows the user to stop a Process Group.

 Enable: This option allows the user to enable all Processors in the Process Group.

 Disable: This option allows the user to disable all Processors in the Process Group.

 View status history: This option opens a graphical representation of the Process Group’s

statistical information over time.

 View connections→Upstream: This option allows the user to see and "jump to" upstream

connections that are coming into the Process Group.

 View connections→Downstream: This option allows the user to see and "jump to"

downstream connections that are going out of the Process Group.

 Center in view: This option centers the view of the canvas on the given Process Group.

 Group: This option allows the user to create a new Process Group that contains the selected

Process Group and any other components selected on the canvas.

 Download flow definition: This option allows the user to download the flow definition of the

process group as a JSON file. The file can be used as a backup or imported into a Logbot ETL

Registry using the Logbot ETL CLI. (Note: If "Download flow definition" is selected for a

versioned process group, there is no versioning information in the download. In other words,

Logbot ETL User Guide – v2.0

© Logbot 2021 15

the resulting contents of the JSON file is the same whether the process group is versioned or

not.)

 Create template: This option allows the user to create a template from the selected Process

Group.

 Copy: This option places a copy of the selected Process Group on the clipboard, so that it

may be pasted elsewhere on the canvas by right-clicking on the canvas and selecting Paste.

The Copy/Paste actions also may be done using the keystrokes Ctrl-C (Command-C) and

Ctrl-V (Command-V).

 Empty all queues: This option allows the user to empty all queues in the selected Process

Group. All FlowFiles from all connections waiting at the time of the request will be removed.

 Delete: This option allows the DFM to delete a Process Group.

Remote Process Group: Remote Process Groups appear and behave similar to Process Groups.

However, the Remote Process Group (RPG) references a remote instance of Logbot ETL. When an

RPG is dragged onto the canvas, rather than being prompted for a name, the DFM is prompted for the

URL of the remote Logbot ETL instance. If the remote Logbot ETL is a clustered instance, adding

two or more cluster node URLs is recommended so that an initial connection can be made even if one

of the nodes is unavailable. Multiple URLs can be specified in a comma-separated format.

When data is transferred to a clustered instance of Logbot ETL via an RPG, the RPG will first connect

to the remote instance whose URL is configured to determine which nodes are in the cluster and how

busy each node is. This information is then used to load balance the data that is pushed to each node.

The remote instances are then interrogated periodically to determine information about any nodes that

are dropped from or added to the cluster and to recalculate the load balancing based on each node’s

load. For more information, see the section on Site-to-Site.

Once you have dragged a Remote Process Group onto the canvas, you can interact with it by right-

clicking on the Remote Process Group and selecting an option from the context menu. The options

available to you from the menu vary, depending on the privileges assigned to you.

Logbot ETL User Guide – v2.0

© Logbot 2021 16

The following options are typically available when you have full privileges to work with the Remote

Process Group:

 Configure: This option allows the user to establish or change the configuration of the Remote

Process Group.

 Enable transmission: Makes the transmission of data between Logbot ETL instances active

(see Remote Process Group Transmission).

 Disable transmission: Disables the transmission of data between Logbot ETL instances.

 View status history: This option opens a graphical representation of the Remote Process

Group’s statistical information over time.

 View connections→Upstream: This option allows the user to see and "jump to" upstream

connections that are coming into the Remote Process Group.

 View connections→Downstream: This option allows the user to see and "jump to"

downstream connections that are going out of the Remote Process Group.

 Refresh remote: This option refreshes the view of the status of the remote Logbot ETL

instance.

 Manage remote ports: This option allows the user to see input ports and/or output ports that

exist on the remote instance of Logbot ETL that the Remote Process Group is connected to.

Note that if the Site-to-Site configuration is secure, only the ports that the connecting Logbot

ETL has been given accessed to will be visible.

 Center in view: This option centers the view of the canvas on the given Remote Process

Group.

 Go to: This option opens a view of the remote Logbot ETL instance in a new tab of the

browser. Note that if the Site-to-Site configuration is secure, the user must have access to the

remote Logbot ETL instance in order to view it.

 Group: This option allows the user to create a new Process Group that contains the selected

Remote Process Group and any other components selected on the canvas.

 Create template: This option allows the user to create a template from the selected Remote

Process Group.

 Copy: This option places a copy of the selected Process Group on the clipboard, so that it

may be pasted elsewhere on the canvas by right-clicking on the canvas and selecting Paste.

The Copy/Paste actions also may be done using the keystrokes Ctrl-C (Command-C) and

Ctrl-V (Command-V).

 Delete: This option allows the DFM to delete a Remote Process Group from the canvas.

Funnel: Funnels are used to combine the data from many Connections into a single

Connection. This has two advantages. First, if many Connections are created with the same

destination, the canvas can become cluttered if those Connections have to span a large space. By

funneling these Connections into a single Connection, that single Connection can then be drawn to

span that large space instead. Secondly, Connections can be configured with FlowFile Prioritizers.

Data from several Connections can be funneled into a single Connection, providing the ability to

Prioritize all of the data on that one Connection, rather than prioritizing the data on each Connection

independently.

Logbot ETL User Guide – v2.0

© Logbot 2021 17

Template: Templates can be created by DFMs from sections of the flow, or they can be

imported from other dataflows. These Templates provide larger building blocks for creating a

complex flow quickly. When the Template is dragged onto the canvas, the DFM is provided a dialog

to choose which Template to add to the canvas:

Clicking the drop-down box shows all available Templates. Any Template that was created with a

description will show a question mark icon, indicating that there is more information. Hovering over

the icon with the mouse will show this description:

Label: Labels are used to provide documentation to parts of a dataflow. When a Label is

dropped onto the canvas, it is created with a default size. The Label can then be resized by dragging

the handle in the bottom-right corner. The Label has no text when initially created. The text of the

Label can be added by right-clicking on the Label and choosing Configure.

Logbot ETL User Guide – v2.0

© Logbot 2021 18

Component Versions

You have access to information about the version of your Processors, Controller Services, and

Reporting Tasks. This is especially useful when you are working within a clustered environment with

multiple Logbot ETL instances running different versions of a component or if you have upgraded to

a newer version of a processor. The Add Processor, Add Controller Service, and Add Reporting Task

dialogs include a column identifying the component version, as well as the name of the component,

the organization or group that created the component, and the NAR bundle that contains the

component.

Each component displayed on the canvas also contains this information.

Sorting and Filtering Components

When you are adding a component, you can sort on version number or filter based on originating

source.

To sort based on version, click the version column to display in ascending or descending version

order.

To filter based on source group, click the source drop-down in the upper left of your Add Component

dialog, and select the group you want to view.

Logbot ETL User Guide – v2.0

© Logbot 2021 19

Changing Component Versions

To change a component version, perform the following steps.

1. Right-click the component on the canvas to display configuration options.

2. Select Change version.

3. In the Component Version dialog, select the version you want to run from the Version drop-

down menu.

Logbot ETL User Guide – v2.0

© Logbot 2021 20

Understanding Version Dependencies

When you are configuring a component, you can also view information about version dependencies.

1. Right-click your component and select Configure to display the Configure dialog for your

component.

2. Click the Properties tab.

3. Click the information icon to view any version dependency information.

In the following example, MyProcessor version 1.0 is configured properly with the controller service

StandardMyService version 1.0:

Logbot ETL User Guide – v2.0

© Logbot 2021 21

If the version of MyProcessor is changed to an incompatible version (MyProcessor 2.0), validation

errors will be displayed on the processor:

and an error message will be displayed in the processor’s controller service configuration since the

service is no longer valid:

Logbot ETL User Guide – v2.0

© Logbot 2021 22

Configuring a Processor

To configure a processor, right-click on the Processor and select the Configure option from the

context menu. Alternatively, just double-click on the Processor. The configuration dialog is opened

with four different tabs, each of which is discussed below. Once you have finished configuring the

Processor, you can apply the changes by clicking "Apply" or cancel all changes by clicking "Cancel".

Note that after a Processor has been started, the context menu shown for the Processor no longer has a

Configure option but rather has a View Configuration option. Processor configuration cannot be

changed while the Processor is running. You must first stop the Processor and wait for all of its active

tasks to complete before configuring the Processor again.

Note that entering certain control characters are not supported and will be automatically filtered out

when entered. The following characters and any unpaired Unicode surrogate codepoints will not be

retained in any configuration:

[#x0], [#x1], [#x2], [#x3], [#x4], [#x5], [#x6], [#x7], [#x8], [#xB], [#xC], [#xE],

[#xF], [#x10], [#x11], [#x12], [#x13], [#x14], [#x15], [#x16], [#x17], [#x18],

[#x19], [#x1A], [#x1B], [#x1C], [#x1D], [#x1E], [#x1F], [#xFFFE], [#xFFFF]

Settings Tab

The first tab in the Processor Configuration dialog is the Settings tab:

This tab contains several different configuration items. First, it allows the DFM to change the name of

the Processor. The name of a Processor by default is the same as the Processor type. Next to the

Processor Name is a checkbox, indicating whether the Processor is Enabled. When a Processor is

added to the canvas, it is enabled. If the Processor is disabled, it cannot be started. The disabled state

is used to indicate that when a group of Processors is started, such as when a DFM starts an entire

Process Group, this (disabled) Processor should be excluded.

Below the Name configuration, the Processor’s unique identifier is displayed along with the

Processor’s type and NAR bundle. These values cannot be modified.

Logbot ETL User Guide – v2.0

© Logbot 2021 23

Next are two dialogues for configuring 'Penalty Duration' and 'Yield Duration'. During the normal

course of processing a piece of data (a FlowFile), an event may occur that indicates that the data

cannot be processed at this time but the data may be processable at a later time. When this occurs, the

Processor may choose to Penalize the FlowFile. This will prevent the FlowFile from being Processed

for some period of time. For example, if the Processor is to push the data to a remote service, but the

remote service already has a file with the same name as the filename that the Processor is specifying,

the Processor may penalize the FlowFile. The 'Penalty Duration' allows the DFM to specify how long

the FlowFile should be penalized. The default value is 30 seconds.

Similarly, the Processor may determine that some situation exists such that the Processor can no

longer make any progress, regardless of the data that it is processing. For example, if a Processor is to

push data to a remote service and that service is not responding, the Processor cannot make any

progress. As a result, the Processor should 'yield', which will prevent the Processor from being

scheduled to run for some period of time. That period of time is specified by setting the 'Yield

Duration'. The default value is 1 second.

The last configurable option on the left-hand side of the Settings tab is the Bulletin level. Whenever

the Processor writes to its log, the Processor also will generate a Bulletin. This setting indicates the

lowest level of Bulletin that should be shown in the User Interface. By default, the Bulletin level is set

to WARN, which means it will display all warning and error-level bulletins.

The right-hand side of the Settings tab contains an 'Automatically Terminate Relationships' section.

Each of the Relationships that is defined by the Processor is listed here, along with its description. In

order for a Processor to be considered valid and able to run, each Relationship defined by the

Processor must be either connected to a downstream component or auto-terminated. If a Relationship

is auto-terminated, any FlowFile that is routed to that Relationship will be removed from the flow and

its processing considered complete. Any Relationship that is already connected to a downstream

component cannot be auto-terminated. The Relationship must first be removed from any Connection

that uses it. Additionally, for any Relationship that is selected to be auto-terminated, the auto-

termination status will be cleared (turned off) if the Relationship is added to a Connection.

Logbot ETL User Guide – v2.0

© Logbot 2021 24

Scheduling Tab

The second tab in the Processor Configuration dialog is the Scheduling Tab:

Scheduling Strategy

The first configuration option is the Scheduling Strategy. There are three possible options for

scheduling components:

Timer driven: This is the default mode. The Processor will be scheduled to run on a regular interval.

The interval at which the Processor is run is defined by the 'Run Schedule' option (see below).

Event driven: When this mode is selected, the Processor will be triggered to run by an event, and that

event occurs when FlowFiles enter Connections feeding this Processor. This mode is currently

considered experimental and is not supported by all Processors. When this mode is selected, the 'Run

Schedule' option is not configurable, as the Processor is not triggered to run periodically but as the

result of an event. Additionally, this is the only mode for which the 'Concurrent Tasks' option can be

set to 0. In this case, the number of threads is limited only by the size of the Event-Driven Thread

Pool that the administrator has configured. (EXPERIMANTAL)

CRON driven: When using the CRON driven scheduling mode, the Processor is scheduled to run

periodically, similar to the Timer driven scheduling mode. However, the CRON driven mode provides

sigLogbot ETLcantly more flexibility at the expense of increasing the complexity of the

configuration. The CRON driven scheduling value is a string of six required fields and one optional

field, each separated by a space. These fields are:

Field Valid values

Seconds 0-59

Minutes 0-59

Hours 0-23

Day of Month 1-31

Month 1-12 or JAN-DEC

Logbot ETL User Guide – v2.0

© Logbot 2021 25

Field Valid values

Day of Week 1-7 or SUN-SAT

Year (optional) empty, 1970-2099

You typically specify values one of the following ways:

 Number: Specify one or more valid value. You can enter more than one value using a

comma-separated list.

 Range: Specify a range using the <number>-<number> syntax.

 Increment: Specify an increment using <start value>/<increment> syntax. For example, in

the Minutes field, 0/15 indicates the minutes 0, 15, 30, and 45.

You should also be aware of several valid special characters:

 *  — Indicates that all values are valid for that field.

 ?  — Indicates that no specific value is specified. This special character is valid in the Days of

Month and Days of Week field.

 L  — You can append L to one of the Day of Week values, to specify the last occurrence of

this day in the month. For example, 1L indicates the last Sunday of the month.

For example:

 The string 0 0 13 * * ? indicates that you want to schedule the processor to run at 1:00 PM

every day.

 The string 0 20 14 ? * MON-FRI indicates that you want to schedule the processor to run at

2:20 PM every Monday through Friday.

 The string 0 15 10 ? * 6L 2011-2017 indicates that you want to schedule the processor to

run at 10:15 AM, on the last Friday of every month, between 2011 and 2017.

For additional information and examples, see the cron triggers tutorial in the Quartz Documentation.

Concurrent Tasks

Next, the Scheduling tab provides a configuration option named 'Concurrent Tasks'. This controls

how many threads the Processor will use. Said a different way, this controls how many FlowFiles

should be processed by this Processor at the same time. Increasing this value will typically allow the

Processor to handle more data in the same amount of time. However, it does this by using system

resources that then are not usable by other Processors. This essentially provides a relative weighting

of Processors — it controls how much of the system’s resources should be allocated to this Processor

instead of other Processors. This field is available for most Processors. There are, however, some

types of Processors that can only be scheduled with a single Concurrent task.

Run Schedule

The 'Run Schedule' dictates how often the Processor should be scheduled to run. The valid values for

this field depend on the selected Scheduling Strategy (see above). If using the Event driven

Scheduling Strategy, this field is not available. When using the Timer driven Scheduling Strategy, this

value is a time duration specified by a number followed by a time unit. For example, 1 second or 5

mins. The default value of 0 sec means that the Processor should run as often as possible as long as it

has data to process. This is true for any time duration of 0, regardless of the time unit (i.e., 0 sec, 0

mins, 0 days). For an explanation of values that are applicable for the CRON driven Scheduling

Strategy, see the description of the CRON driven Scheduling Strategy itself.

Logbot ETL User Guide – v2.0

© Logbot 2021 26

Execution

The Execution setting is used to determine on which node(s) the Processor will be scheduled to

execute. Selecting 'All Nodes' will result in this Processor being scheduled on every node in the

cluster. Selecting 'Primary Node' will result in this Processor being scheduled on the Primary Node

only. Processors that have been configured for 'Primary Node' execution are identified by a "P" next

to the processor icon. To quickly identify 'Primary Node' processors, the "P" icon is also shown in the

Processors tab on the Summary page.

Run Duration

The right-hand side of the Scheduling tab contains a slider for choosing the 'Run Duration'. This

controls how long the Processor should be scheduled to run each time that it is triggered. On the left-

hand side of the slider, it is marked 'Lower latency' while the right-hand side is marked 'Higher

throughput'. When a Processor finishes running, it must update the repository in order to transfer the

FlowFiles to the next Connection. Updating the repository is expensive, so the more work that can be

done at once before updating the repository, the more work the Processor can handle (Higher

throughput). However, this means that the next Processor cannot start processing those FlowFiles

until the previous Process updates this repository. As a result, the latency will be longer (the time

required to process the FlowFile from beginning to end will be longer). As a result, the slider provides

a spectrum from which the DFM can choose to favor Lower Latency or Higher Throughput.

Properties Tab

The Properties tab provides a mechanism to configure Processor-specific behavior. There are no

default properties. Each type of Processor must define which Properties make sense for its use case.

Below, we see the Properties tab for a RouteOnAttribute Processor:

This Processor, by default, has only a single property: 'Routing Strategy'. The default value is 'Route

to Property name'. Next to the name of this property is a small question mark symbol (). This help

symbol is seen in other places throughout the User Interface, and it indicates that more information is

available. Hovering over this symbol with the mouse will provide additional details about the property

and the default value, as well as historical values that have been set for the Property.

Logbot ETL User Guide – v2.0

© Logbot 2021 27

Clicking on the value for the property will allow a DFM to change the value. Depending on the values

that are allowed for the property, the user is either provided a drop-down from which to choose a

value or is given a text area to type a value:

In the top-right corner of the tab is a button for adding a New Property. Clicking this button will

provide the DFM with a dialog to enter the name and value of a new property. Not all Processors

allow User-Defined properties. In processors that do not allow them, the Processor becomes invalid

when User-Defined properties are applied. RouteOnAttribute, however, does allow User-Defined

properties. In fact, this Processor will not be valid until the user has added a property.

Note that after a User-Defined property has been added, an icon will appear on the right-hand side of

that row (). Clicking it will remove the User-Defined property from the Processor.

Logbot ETL User Guide – v2.0

© Logbot 2021 28

Some processors also have an Advanced User Interface (UI) built into them. For example, the

UpdateAttribute processor has an Advanced UI. To access the Advanced UI, click the "Advanced"

button that appears at the bottom of the Configure Processor window. Only processors that have an

Advanced UI will have this button.

Some processors have properties that refer to other components, such as Controller Services, which

also need to be configured. For example, the GetHTTP processor has an SSLContextService property,

which refers to the StandardSSLContextService controller service. When DFMs want to configure

this property but have not yet created and configured the controller service, they have the option to

create the service on the spot, as depicted in the image below. For more information about configuring

Controller Services, see the Controller Services section.

Logbot ETL User Guide – v2.0

© Logbot 2021 29

Comments Tab

The last tab in the Processor configuration dialog is the Comments tab. This tab simply provides an

area for users to include whatever comments are appropriate for this component. Use of the

Comments tab is optional:

Additional Help

You can access additional documentation about each Processor’s usage by right-clicking on the

Processor and selecting 'Usage' from the context menu. Alternatively, select Help from the Global

Menu in the top-right corner of the UI to display a Help page with all of the documentation, including

usage documentation for all the Processors that are available. Click on the desired Processor to view

usage documentation.

Logbot ETL User Guide – v2.0

© Logbot 2021 30

Configuring a Process Group

To configure a Process Group, right-click on the Process Group and select the Configure option from

the context menu. The configuration dialog is opened with two tabs: General and Controller Services.

General Tab

This tab contains several different configuration items. First is the Process Group Name. This is the

name that is shown at the top of the Process Group on the canvas as well as in the breadcrumbs at the

bottom of the UI. For the Root Process Group (i.e., the highest level group), this is also the name that

is shown as the title of the browser tab. Note that this information is visible to any other Logbot ETL

instance that connects remotely to this instance (using Remote Process Groups, a.k.a., Site-to-Site).

The next configuration element is the Process Group Parameter Context, which is used to provide

parameters to components of the flow. From this drop-down, the user is able to choose which

Parameter Context should be bound to this Process Group and can optionally create a new one to bind

to the Process Group. For more information refer to Parameters and Parameter Contexts.

The third element in the configuration dialog is the Process Group Comments. This provides a

mechanism for providing any useful information or context about the Process Group.

The last two elements, Process Group FlowFile Currency and Process Group Outbound Policy, are

covered in the following sections.

FlowFile Concurrency

FlowFile Concurrency is used to control how data is brought into the Process Group. There are three

options available:

 Unbounded (the default)

 Single FlowFile Per Node

 Single Batch Per Node

Logbot ETL User Guide – v2.0

© Logbot 2021 31

When the FlowFile Concurrency is set to "Unbounded", the Input Ports in the Process Group will

ingest data as quickly as they are able, provided that backpressure does not prevent them from doing

so.

When the FlowFile Concurrency is configured to "Single FlowFile Per Node", the Input Ports will

only allow a single FlowFile through at at time. Once that FlowFile enters the Process Group, no

additional FlowFiles will be brought in until all FlowFiles have left the Process Group (either by

being removed from the system/auto-terminated, or by exiting through an Output Port). This will

often result in slower performance, as it reduces the parallelization that Logbot ETL uses to process

the data. However, there are several reasons that a user may want to use this approach. A common use

case is one in which each incoming FlowFile contains references to several other data items, such as a

list of files in a directory. The user may want to process the entire listing before allowing any other

data to enter the Process Group.

When the FlowFile Concurrency is configured to "Single Batch Per Node", the Input Ports will

behave similarly to the way that they behave in the "Single FlowFile Per Node" mode, but when a

FlowFile is ingested, the Input Ports will continue to ingest all data until all of the queues feeding the

Input Ports have been emptied. At that point, they will not bring any more data into the Process Group

until all data has finished processing and has left the Process Group (see Connecting Batch-Oriented

Process Groups).

The FlowFile Concurrency controls only when data will be pulled into the Process Group from an

Input Port. It does not prevent a Processor within the Process Group from ingesting data from

outside of Logbot ETL.

Outbound Policy

While the FlowFile Concurrency dictates how data should be brought into the Process Group, the

Outbound Policy controls the flow of data out of the Process Group. There are two available options

available:

 Stream When Available (the default)

 Batch Output

When the Outbound Policy is configured to "Stream When Available", data that arrives at an Output

Port is immediately transferred out of the Process Group, assuming that no backpressure is applied.

When the Outbound Policy is configured to "Batch Output", the Output Ports will not transfer data out

of the Process Group until all data that is in the Process Group is queued up at an Output Port (i.e., no

data leaves the Process Group until all of the data has finished processing). It doesn’t matter whether

the data is all queued up for the same Output Port, or if some data is queued up for Output Port A

while other data is queued up for Output Port B. These conditions are both considered the same in

terms of the completion of the FlowFile Processing.

Using an Outbound Policy of "Batch Output" along with a FlowFile Concurrency of "Single FlowFile

Per Node" allows a user to easily ingest a single FlowFile (which in and of itself may represent a

batch of data) and then wait until all processing of that FlowFile has completed before continuing on

to the next step in the dataflow (i.e., the next component outside of the Process Group). Additionally,

when using this mode, each FlowFile that is transferred out of the Process Group will be given a

series of attributes named "batch.output.<Port Name>" for each Output Port in the Process Group.

The value will be equal to the number of FlowFiles that were routed to that Output Port for this batch

of data. For example, consider a case where a single FlowFile is split into 5 FlowFiles, and two

FlowFiles go to Output Port A, one goes to Output Port B, and two go to Output Port C, and no

Logbot ETL User Guide – v2.0

© Logbot 2021 32

FlowFiles go to Output Port D. In this case, each FlowFile will have attributes batch.output.A = 2,

batch.output.B = 1, batch.output.C = 2, batch.output.D = 0.

The Outbound Policy of "Batch Output" doesn’t provide any benefits when used in conjunction with a

FlowFile Concurrency of "Unbounded". As a result, the Outbound Policy is ignored if the FlowFile

Concurrency is set to "Unbounded".

Connecting Batch-Oriented Process Groups

A common use case in Logbot ETL is to perform some batch-oriented process and only after that

process completes perform another process on that same batch of data.

Logbot ETL makes this possible by encapsulating each of these processes in its own Process Group.

The Outbound Policy of the first Process Group should be configured as "Batch Output" while the

FlowFile Concurrency should be either "Single FlowFile Per Node" or "Single Batch Per Node". With

this configuration, the first Process Group will process an entire batch of data (which will either be a

single FlowFile or many FlowFiles depending on the FlowFile Concurrency) as a coherent batch of

data. When processing has completed for that batch of data, the data will be held until all FlowFiles

are finished processing and ready to leave the Process Group. At that point, the data can be transferred

out of the Process Group as a batch. This configuration - when a Process Group is configured with an

Outbound Policy of "Batch Output" and an Output Port is connected directly to the Input Port of a

Process Group with a FlowFile Concurrency of "Single Batch Per Node" - is treated as a slightly

special case. The receiving Process Group will ingest data not only until its input queues are empty

but until they are empty AND the source Process Group has transferred all of the data from that batch

out of the Process Group. This allows a collection of FlowFiles to be transferred as a single batch of

data between Process Groups - even if those FlowFiles are spread across multiple ports.

Caveats

When using a FlowFile Concurrency of "Single FlowFile Per Node", there are a couple of caveats to

consider.

First, an Input Port is free to bring data into the Process Group if there is no data queued up in that

Process Group on the same node. This means that in a 5-node cluster, for example, there may be up to

5 incoming FlowFiles being processed simultaneously. Additionally, if a connection is configured to

use Load Balancing, it may transfer data to another node in the cluster, allowing data to enter the

Process Group while that FlowFile is still being processed. As a result, it is not recommended to use

Load-Balanced Connections within a Process Group that is not configured for "Unbounded" FlowFile

Concurrency.

When using the Outbound Policy of "Batch Output", it is important to consider backpressure.

Consider a case where no data will be transferred out of a Process Group until all data is finished

processing. Also consider that the connection to Output Port A has a backpressure threshold of 10,000

FlowFiles (the default). If that queue reaches the threshold of 10,000, the upstream Processor will no

longer be triggered. As a result, data will not finish processing, and the flow will end in a deadlock, as

the Output Port will not run until the processing completes and the Processor will not run until the

Output Port runs. To avoid this, if a large number of FlowFiles are expected to be generated from a

single input FlowFile, it is recommended that backpressure for Connections ending in an Output Port

be configured in such a way to allow for the largest expected number of FlowFiles or backpressure for

those Connections be disabled all together (by setting the Backpressure Threshold to 0). See Back

Pressure for more information.

Logbot ETL User Guide – v2.0

© Logbot 2021 33

Controller Services

The Controller Services tab in the Process Group configuration dialog is covered in Adding Controller

Services for Dataflows.

Logbot ETL User Guide – v2.0

© Logbot 2021 34

Parameters

The values of properties in the flow, including sensitive properties, can be parameterized using

Parameters. Parameters are created and configured within the Logbot ETL UI. Any property can be

configured to reference a Parameter with the following conditions:

 A sensitive property can only reference a Sensitive Parameter

 A non-sensitive property can only reference a Non-Sensitive Parameter

 Properties that reference Controller Services can not use Parameters

 Parameters cannot be referenced in Reporting Tasks or in controller-level Controller Services

The UI indicates whether a Parameter can be used for a property value.

Parameters have numerous advantages over Variables. In addition to sensitive value support,

Parameters offer more granular control over access policies. Additionally, properties that reference

Parameters are validated against the substituted value, unlike most properties that reference

Variables using Expression Language.

Parameter Contexts

Parameters are created within Parameter Contexts. Parameter Contexts are globally defined/accessible

to the Logbot ETL instance. Access policies can be applied to Parameter Contexts to determine which

users can create them. Once created, policies to read and write to a specific Parameter Context can

also be applied (see Accessing Parameters for more information).

Creating a Parameter Context

To create a Parameter Context, select Parameter Contexts from the Global Menu:

Logbot ETL User Guide – v2.0

© Logbot 2021 35

In the Parameter Contexts window, click the + button in the upper-right corner and the Add Parameter

Context window opens. The window has two tabs: Settings and Parameters.

On the "Settings" tab, add a name for the Parameter Context and a description if desired. Select

"Apply" to save the Parameter Context or select the "Parameters" tab to add parameters to the context.

Adding a Parameter to a Parameter Context

Parameters can be added during Parameter Context creation or added to existing Parameter Contexts.

During Parameter Context creation, select the "Parameters" tab. Click the + button to open the Add

Parameter window.

Logbot ETL User Guide – v2.0

© Logbot 2021 36

To add parameters to an existing Parameter Context, open the Parameter Context window and click

the Edit button () in the row of the desired Parameter Context.

On the "Parameters" tab, click the + button to open the Add Parameter window.

The Add Parameter window has the following settings:

 Name - A name that is used to denote the Parameter. Only alpha-numeric characters (a-z, A-

Z, 0-9), hyphens (-), underscores (_), periods (.), and spaces are allowed.

Logbot ETL User Guide – v2.0

© Logbot 2021 37

 Value - The value that will be used when the Parameter is referenced. If a Parameter makes

use of the Expression Language, it is important to note that the Expression Language will be

evaluated in the context of the component that references the Parameter. Please see the

Parameters and Expression Language section below for more information.

 Set empty string - Check to explicitly set the value of the Parameter to an empty string.

Unchecked by default. (Note: If checked but a value is set, the checkbox is ignored.)

 Sensitive Value - Set to "Yes" if the Parameter’s Value should be considered sensitive. If

sensitive, the value of the Parameter will not be shown in the UI once applied. The default

setting is "No". Sensitive Parameters can only be referenced by sensitive properties and Non-

Sensitive Parameters by non-sensitive properties. Once a Parameter is created, its sensitivity

flag cannot be changed.

 Description - A description that explains what the Parameter is, how it is to be used, etc. This

field is optional.

Once these settings are configured, select "Apply". The Referencing Components lists the

components referenced by the currently selected parameter. Add additional Parameters or edit any

existing Parameters.

To complete the process, select "Apply" from the Parameter Context window. The following

operations are performed to validate all components that reference the added or modified parameters:

Stopping/Restarting affected Processors, Disabling/Re-enabling affected Controller Services,

Updating Parameter Context.

Logbot ETL User Guide – v2.0

© Logbot 2021 38

The Referencing Components section now lists an aggregation of all the components referenced by

the set of parameters added/edited/deleted, organized by process group.

Parameters and Expression Language

When adding a Parameter that makes use of the Expression Language, it is important to understand

the context in which the Expression Language will be evaluated. The expression is always evaluated

in the context of the Process or Controller Service that references the Parameter. Take, for example, a

scenario where Parameter with the name Time is added with a value of ${now()}. The Expression

Language results in a call to determine the system time when it is evaluated. When added as a

Parameter, the system time is not evaluated when the Parameter is added, but rather when a Processor

or Controller Service evaluates the Expression. That is, if a Processor has a Property whose value is

set to #{Time} it will function in exactly the same manner as if the Property’s value were set to

${now()}. Each time that the property is referenced, it will produce a different timestamp.

Furthermore, some Properties do not allow for Expression Language, while others allow for

Expression Language but do not evaluate expressions against FlowFile attributes. To help understand

how this works, consider a Parameter named File whose value is ${filename}. Then consider three

different properties, each with a different Expression Language Scope and a FlowFile whose filename

is test.txt. If each of those Properties is set to #{File}, then the follow table illustrates the resultant

value.

Configured

Property Value

Expression

Language Scope

Effective

Property Value
Notes

#{File}
FlowFile

Attributes
test.txt

The filename is resolved by looking at the

filename attribute.

#{File}
Variable

Registry Only
Empty String

FlowFile attributes are not in scope, and we

assume there is no Variable in the Variable

Registry named "filename"

Logbot ETL User Guide – v2.0

© Logbot 2021 39

Configured

Property Value

Expression

Language Scope

Effective

Property Value
Notes

#{File} None ${filename}
The literal text "${filename}" will be

unevaluated.

Assigning a Parameter Context to a Process Group

For a component to reference a Parameter, its Process Group must first be assigned a Parameter

Context. Once assigned, processors and controller services within that Process Group may only

reference Parameters within that Parameter Context.

A Process Group can only be assigned one Parameter Context, while a given Parameter Context can

be assigned to multiple Process Groups.

A user can only set the Parameter Context of a Process Group to one of the Parameter Contexts that

the user has the view policy for. Additionally, in order to set the Parameter Context, the user must

have the modify policy for the Process Group. See Accessing Parameters for more information.

To assign a Parameter Context to a Process Group, click Configure, either from the Operate Palette or

from the Process Group context menu.

In the Flow Configuration window, select the "General" tab. From the Process Group Parameter

Context drop-down menu, select an existing Parameter Context or create a new one.

Logbot ETL User Guide – v2.0

© Logbot 2021 40

Select "Apply" to save the configuration changes. The Process Group context menu now includes a

"Parameters" option which allows quick access to the Update Parameter Context window for the

assigned Parameter Context.

Logbot ETL User Guide – v2.0

© Logbot 2021 41

If the Parameter Context for a Process Group is changed, all components that reference any

Parameters in that Process Group will be stopped, validated, and restarted assuming the components

were previously running and are still valid.

If a Parameter Context is unset from a Process Group, it does NOT inherit the Parameter Context

from the parent Process Group. Instead, no Parameters can be referenced. Any component that does

already reference a Parameter will become invalid.

Referencing Parameters

Parameter Reference Syntax

To configure an eligible property to reference a Parameter, use the # symbol as the start, with the

Parameter’s name enclosed in curly braces:

#{Parameter.Name}

This can be escaped using an additional # character at the beginning. To illustrate this, assume that the

Parameter abc has a value of xxx and Parameter def has a value of yyy. Then, the following user-

defined property values will evaluate to these effective values:

User-Entered Literal

Property Value
Effective Property Value Explanation

Logbot ETL User Guide – v2.0

© Logbot 2021 42

#{abc} xxx Simple substitution

#{abc}/data xxx/data
Simple substitution with additional literal

data

#{abc}/#{def} xxx/yyy
Multiple substitution with additional literal

data

#{abc #{abc No { } for parameter replacement

#abc #abc No { } for parameter replacement

##{abc} #{abc} Escaped # for literal interpretation

###{abc} #xxx
Escaped # for literal interpretation, followed

by simple substitution

####{abc} ##{abc} Escaped # for literal interpretation, twice

#####{abc} ##xxx
Escaped # for literal interpretation, twice,

followed by simple substitution

#{abc/data}
Exception thrown on

property set operation
/ not a valid parameter name character

When referencing a Parameter from within Expression Language, the Parameter reference is

evaluated first. As an example, to replace xxx with zzz for the abc Parameter:

${ #{abc}:replace('xxx', 'zzz') }

Referencing and Creating Parameters During Component Configuration

Parameters can be easily referenced or created as you configure the components in your flow. For

example, assume a process group has the Parameter Context "Kafka Settings" assigned to it. "Kafka

Settings" contains the parameters kafka.broker and kafka.topic1.

Logbot ETL User Guide – v2.0

© Logbot 2021 43

To reference kafka.broker as the value for the "Kafka Brokers" property in the PublishKafka

processor, clear the default value and begin a new entry with the start delimiter #{. Next use the

keystroke control+space to show the list of available parameters:

Select kafka.broker and complete the entry with a closing curly brace }.

Logbot ETL User Guide – v2.0

© Logbot 2021 44

Help text describing this process is displayed when hovering over the Expression Language and

Parameters eligibility indicators.

Logbot ETL User Guide – v2.0

© Logbot 2021 45

Parameters can also be created on the fly. For example, to create a parameter for the "Topic Name"

property, select the "Convert to Parameter" icon () in that property’s row. This icon will only be

available if the user has appropriate permissions to modify the Parameter Context (see Accessing

Parameters for more information).

The Add Parameter dialog will open. Configure the new parameter as desired.

Logbot ETL User Guide – v2.0

© Logbot 2021 46

Select "Apply". The process group’s Parameter Context will be updated and the new parameter will

be referenced by the property with the proper syntax applied automatically.

Logbot ETL User Guide – v2.0

© Logbot 2021 47

Properties values that are selectable can also reference parameters. In addition to applying the

"Convert to Parameter" method described earlier, the option "Reference parameter.." is available in

the value drop-down menu.

Selecting "Reference parameter…" will display a drop-down list of available parameters, determined

by the parameter context assigned to the component’s process group and the user’s access policies.

Hovering over the question mark icon () displays the parameter’s description.

Using Parameters with Sensitive Properties

Logbot ETL User Guide – v2.0

© Logbot 2021 48

Sensitive properties may only reference sensitive Parameters. This is important for versioned flows.

The value of the sensitive Parameter itself will NOT be sent to the flow registry, only the fact that the

property references the sensitive Parameter. For more information see Parameters in Versioned Flows.

The value of a sensitive property must be set to a single Parameter reference. For example, values of

#{password}123 and #{password}#{suffix} are not allowed. Sending #{password}123 would lead

to exposing part of the sensitive property’s value. This is in contrast to a non-sensitive property,

where a value such as #{path}/child/file.txt is valid.

Accessing Parameters

User privileges to Parameters are managed via access policies on the following levels:

 Parameter Context

 Process Group

 Component

For additional information on how to configure access policies, see the Access Policies section in

the System Administrator’s Guide.

Logbot ETL User Guide – v2.0

© Logbot 2021 49

Using Custom Properties with Expression Language

You can use Logbot ETL Expression Language to reference FlowFile attributes, compare them to

other values, and manipulate their values when you are creating and configuring dataflows. For more

information on Expression Language, see the Expression Language Guide.

In addition to using FlowFile attributes, system properties, and environment properties within

Expression Language, you can also define custom properties for Expression Language use. Defining

custom properties gives you more flexibility in handling and processing dataflows. You can also

create custom properties for connection, server, and service properties, for easier dataflow

configuration.

Logbot ETL properties have resolution precedence of which you should be aware when creating

custom properties:

 Processor-specific attributes

 FlowFile properties

 FlowFile attributes

 From Variable Registry

o User defined properties (custom properties)

o System properties

o Operating System environment variables

When you are creating custom properties, ensure that each custom property contains a distinct

property value, so that it is not overridden by existing environment properties, system properties, or

FlowFile attributes.

To use and manage custom properties with Expression Language you can use Variables:

Variables are created and configured within the Logbot ETL UI. They can be used in any field that

supports Expression Language. Variables cannot be used for sensitive properties. Logbot ETL

automatically picks up new or modified variables. Variables are defined at the Process Group level, as

a result, the access policies for viewing and changing variables are derived from the access policies of

the Process Group. See Variables for more information.

Expression Language support for a property is indicated in the UI.

Logbot ETL User Guide – v2.0

© Logbot 2021 50

Variables

Variables are created and configured within the Logbot ETL UI. They can be used in any field that

supports Expression Language. Variables cannot be used for sensitive properties. Variables are

defined at the Process Group level, as a result, the access policies for viewing and changing variables

are derived from the access policies of the Process Group. Variable values cannot reference other

variables or make use of Expression Language.

Variables Window

To access the Variables window, right-click on the canvas with nothing selected:

Logbot ETL User Guide – v2.0

© Logbot 2021 51

Select "Variables" from the Context Menu:

"Variables" is also available in the right-click Context Menu when a process group is selected:

Logbot ETL User Guide – v2.0

© Logbot 2021 52

Creating a Variable

In the Variables window, click the + button to create a new variable. Add a name:

Logbot ETL User Guide – v2.0

© Logbot 2021 53

and a value:

Select "Apply":

Steps to update the variable are performed (Identifying components affected, Stopping affected

Processors, etc.). For example, the Referencing Processors section now lists the "PutFile-Root"

processor. Selecting the name of the processor in the list will navigate to that processor on the canvas.

Looking at the properties of the processor, ${putfile_dir} is referenced by the Directory property:

Logbot ETL User Guide – v2.0

© Logbot 2021 54

Variable Scope

Variables are scoped by the Process Group they are defined in and are available to any Processor

defined at that level and below (i.e. any descendant Processors).

Variables in a descendant group override the value in a parent group. More specifically, if a variable x

is declared at the root group and also declared inside a process group, components inside the process

group will use the value of x defined in the process group.

For example, in addition to the putfile_dir variable that exists at the root process group, assume

another putfile_dir variable was created within Process Group A. If one of the components within

Process Group A references putfile_dir, both variables will be listed, but the putfile_dir from the

root group will have a strikethrough indicating that is is being overridden:

Logbot ETL User Guide – v2.0

© Logbot 2021 55

A variable can only be modified for the process group it was created in, which is listed at the top of

the Variables window. To modify a variable defined in a different process group, select the "arrow"

icon in that variable’s row:

which will navigate to the Variables window for that process group:

Logbot ETL User Guide – v2.0

© Logbot 2021 56

Controller Services

Controller Services are shared services that can be used by reporting tasks, processors, and other

services to utilize for configuration or task execution.

Controller Services defined on the controller level are limited to reporting tasks and other services

defined there. Controller Services for use by processors in your dataflow must be defined in the

configuration of the root process group or sub-process group(s) where they will be used.

If your Logbot ETL instance is secured, your ability to view and add Controller Services is

dependent on the privileges assigned to you. If you do not have access to one or more Controller

Services, you are not able to see or access it in the UI. Access privileges can be assigned on a global

or Controller Service-specific basis (see Accessing the UI with Multi-Tenant Authorization for more

information).

Adding Controller Services for Reporting Tasks

To add a Controller Service for a reporting task, select Controller Settings from the Global Menu.

This displays the Logbot ETL Settings window. The window has four tabs: General, Reporting Task

Controller Services, Reporting Tasks and Registry Clients. The General tab provides settings for the

overall maximum thread counts of the instance.

Logbot ETL User Guide – v2.0

© Logbot 2021 57

To the right of the General tab is the Reporting Task Controller Services tab. From this tab, the DFM

may click the + button in the upper-right corner to create a new Controller Service.

The Add Controller Service window opens. This window is similar to the Add Processor window. It

provides a list of the available Controller Services on the right and a tag cloud, showing the most

common category tags used for Controller Services, on the left. The DFM may click any tag in the tag

cloud in order to narrow down the list of Controller Services to those that fit the categories desired.

The DFM may also use the Filter field at the top-right of the window to search for the desired

Controller Service or use the Source drop-down at the top-left to filter the list by the group who

created them. Upon selecting a Controller Service from the list, the DFM can see a description of the

service below. Select the desired controller service and click Add, or simply double-click the name of

the service to add it.

Logbot ETL User Guide – v2.0

© Logbot 2021 58

Once you have added a Controller Service, you can configure it by clicking the "Configure" button in

the far-right column. Other buttons in this column include "Enable", "Remove" and "Access Policies".

You can obtain information about Controller Services by clicking the "Usage" and "Alerts" buttons in

the left-hand column.

When the DFM clicks the "Configure" button, a Configure Controller Service window opens. It has

three tabs: Settings, Properties,and Comments. This window is similar to the Configure Processor

window. The Settings tab provides a place for the DFM to give the Controller Service a unique name

(if desired). It also lists the UUID, Type, Bundle and Support information for the service and provides

a list of other components (reporting tasks or other controller services) that reference the service.

Logbot ETL User Guide – v2.0

© Logbot 2021 59

The Properties tab lists the various properties that apply to the particular controller service. As with

configuring processors, the DFM may hover over the question mark icons to see more information

about each property.

The Comments tab is just an open-text field, where the DFM may include comments about the

service. After configuring a Controller Service, click "Apply" to save the configuration and close the

window, or click "Cancel" to discard the changes and close the window.

Adding Controller Services for Dataflows

To add a Controller Service for a dataflow, you can either right click a Process Group and select

Configure, or click Configure from the Operate Palette.

Logbot ETL User Guide – v2.0

© Logbot 2021 60

When you click Configure from the Operate Palette with nothing selected on your canvas, you add a

Controller Service for your Root Process Group. That Controller Service is then available to all nested

Process Groups in your dataflow. When you select a Process Group on the canvas and then click

Configure from either the Operate Palette or the Process Group context menu, the service will be

available to all Processors and Controller Services defined in that Process Group and below.

Use the following steps to add a Controller Service:

Logbot ETL User Guide – v2.0

© Logbot 2021 61

1. Click Configure, either from the Operate Palette, or from the Process Group context menu.

This displays the process group Configuration window. The window has two tabs: General

and Controller Services. The General Tab is for settings that pertain to general information

about the process group.

2. From the Process Group Configuration page, select the Controller Services tab.

3. Click the + button to display the Add Controller Service dialog.

4. Select the Controller Service desired, and click Add.

5. Perform any necessary Controller Service configuration tasks by clicking the Configure icon (

) in the right-hand column.

Enabling/Disabling Controller Services

After a Controller Service has been configured, it must be enabled in order to run. Do this using the

"Enable" button () in the far-right column of the Controller Services tab. In order to modify an

existing/running controller service, the DFM needs to stop/disable it (as well as all referencing

reporting tasks and controller services). Do this using the "Disable" button (). Rather than having

to hunt down each component that is referenced by that controller service, the DFM has the ability to

stop/disable them when disabling the controller service in question. When enabling a controller

service, the DFM has the option to either start/enable the controller service and all referencing

components or start/enable only the controller service itself.

Logbot ETL User Guide – v2.0

© Logbot 2021 62

Logbot ETL User Guide – v2.0

© Logbot 2021 63

Reporting Tasks

Reporting Tasks run in the background to provide statistical reports about what is happening in the

Logbot ETL instance. The DFM adds and configures Reporting Tasks similar to the process for

Controller Services. To add a Reporting Task, select Controller Settings from the Global Menu.

This displays the Logbot ETL Settings window. Select the Reporting Tasks tab and click the + button

in the upper-right corner to create a new Reporting Task.

Logbot ETL User Guide – v2.0

© Logbot 2021 64

The Add Reporting Task window opens. This window is similar to the Add Processor window. It

provides a list of the available Reporting Tasks on the right and a tag cloud, showing the most

common category tags used for Reporting Tasks, on the left. The DFM may click any tag in the tag

cloud in order to narrow down the list of Reporting Tasks to those that fit the categories desired. The

DFM may also use the Filter field at the top-right of the window to search for the desired Reporting

Task or use the Source drop-down at the top-left to filter the list by the group who created them. Upon

selecting a Reporting Task from the list, the DFM can see a description of the task below. Select the

desired reporting task and click Add, or simply double-click the name of the service to add it.

Logbot ETL User Guide – v2.0

© Logbot 2021 65

Once a Reporting Task has been added, the DFM may configure it by clicking the "Edit" button in the

far-right column. Other buttons in this column include "Start", "Remove", "State" and "Access

Policies".

You can obtain information about Reporting Tasks by clicking the "View Details", "Usage", and

"Alerts" buttons in the left-hand column.

When the DFM clicks the "Edit" button, a Configure Reporting Task window opens. It has three tabs:

Settings, Properties, and Comments. This window is similar to the Configure Processor window. The

Settings tab provides a place for the DFM to give the Reporting Task a unique name (if desired). It

also lists the UUID, Type, and Bundle information for the task and provides settings for the task’s

Scheduling Strategy and Run Schedule (similar to the same settings in a processor). The DFM may

hover the mouse over the question mark icons to see more information about each setting.

Logbot ETL User Guide – v2.0

© Logbot 2021 66

The Properties tab lists the various properties that may be configured for the task. The DFM may

hover the mouse over the question mark icons to see more information about each property.

The Comments tab is just an open-text field, where the DFM may include comments about the task.

After configuring the Reporting Task, click "Apply" to save the configuration and close the window,

or click "Cancel" to discard the changes and close the window.

When you want to run the Reporting Task, click the "Start" button ().

Logbot ETL User Guide – v2.0

© Logbot 2021 67

Connecting Components

Once processors and other components have been added to the canvas and configured, the next step is

to connect them to one another so that Logbot ETL knows what to do with each FlowFile after it has

been processed. This is accomplished by creating a Connection between each component. When the

user hovers the mouse over the center of a component, a new Connection icon () appears:

The user drags the Connection bubble from one component to another until the second component is

highlighted. When the user releases the mouse, a 'Create Connection' dialog appears. This dialog

consists of two tabs: 'Details' and 'Settings'. They are discussed in detail below. Note that it is possible

to draw a connection so that it loops back on the same processor. This can be useful if the DFM wants

the processor to try to re-process FlowFiles if they go down a failure Relationship. To create this type

of looping connection, simply drag the connection bubble away and then back to the same processor

until it is highlighted. Then release the mouse and the same 'Create Connection' dialog appears.

Details Tab

The Details tab of the 'Create Connection' dialog provides information about the source and

destination components, including the component name, the component type, and the Process Group

in which the component lives:

Logbot ETL User Guide – v2.0

© Logbot 2021 68

Additionally, this tab provides the ability to choose which Relationships should be included in this

Connection. At least one Relationship must be selected. If only one Relationship is available, it is

automatically selected.

If multiple Connections are added with the same Relationship, any FlowFile that is routed to that

Relationship will automatically be 'cloned', and a copy will be sent to each of those Connections.

Settings

The Settings tab provides the ability to configure the Connection’s Name, FlowFile Expiration, Back

Pressure Thresholds, Load Balance Strategy and Prioritization:

The Connection name is optional. If not specified, the name shown for the Connection will be names

of the Relationships that are active for the Connection.

FlowFile Expiration

FlowFile expiration is a concept by which data that cannot be processed in a timely fashion can be

automatically removed from the flow. This is useful, for example, when the volume of data is

expected to exceed the volume that can be sent to a remote site. In this case, the expiration can be

used in conjunction with Prioritizers to ensure that the highest priority data is processed first and then

anything that cannot be processed within a certain time period (one hour, for example) can be

dropped. The expiration period is based on the time that the data entered the Logbot ETL instance. In

other words, if the file expiration on a given connection is set to '1 hour', and a file that has been in the

Logbot ETL instance for one hour reaches that connection, it will expire. The default value of 0 sec

indicates that the data will never expire. When a file expiration other than '0 sec' is set, a small clock

icon appears on the connection label, so the DFM can see it at-a-glance when looking at a flow on the

canvas.

Logbot ETL User Guide – v2.0

© Logbot 2021 69

Back Pressure

Logbot ETL provides two configuration elements for Back Pressure. These thresholds indicate how

much data should be allowed to exist in the queue before the component that is the source of the

Connection is no longer scheduled to run. This allows the system to avoid being overrun with data.

The first option provided is the "Back pressure object threshold." This is the number of FlowFiles that

can be in the queue before back pressure is applied. The second configuration option is the "Back

pressure data size threshold." This specifies the maximum amount of data (in size) that should be

queued up before applying back pressure. This value is configured by entering a number followed by

a data size (B for bytes, KB for kilobytes, MB for megabytes, GB for gigabytes, or TB for terabytes).

By default each new connection added will have a default Back Pressure Object Threshold of

10,000 objects and Back Pressure Data Size Threshold of 1 GB. These defaults can be changed by

modifying the appropriate properties in the Logbot ETL.properties file.

When back pressure is enabled, small progress bars appear on the connection label, so the DFM can

see it at-a-glance when looking at a flow on the canvas. The progress bars change color based on the

queue percentage: Green (0-60%), Yellow (61-85%) and Red (86-100%).

Hovering your mouse over a bar displays the exact percentage.

Logbot ETL User Guide – v2.0

© Logbot 2021 70

When the queue is completely full, the Connection is highlighted in red.

Load Balancing

Load Balance Strategy

To distribute the data in a flow across the nodes in the cluster, Logbot ETL offers the following load

balance strategies:

 Do not load balance: Do not load balance FlowFiles between nodes in the cluster. This is the

default.

 Partition by attribute: Determines which node to send a given FlowFile to based on the

value of a user-specified FlowFile Attribute. All FlowFiles that have the same value for the

Attribute will be sent to the same node in the cluster. If the destination node is disconnected

from the cluster or if unable to communicate, the data does not fail over to another node. The

data will queue, waiting for the node to be available again. Additionally, if a node joins or

leaves the cluster necessitating a rebalance of the data, consistent hashing is applied to avoid

having to redistribute all of the data.

 Round robin: FlowFiles will be distributed to nodes in the cluster in a round-robin fashion. If

a node is disconnected from the cluster or if unable to communicate with a node, the data that

is queued for that node will be automatically redistributed to another node(s). If a node is not

able to receive the data as fast other nodes in the cluster, the node may also be skipped for one

or more iterations in order to maximize throughput of data distribution across the cluster.

 Single node: All FlowFiles will be sent to a single node in the cluster. Which node they are

sent to is not configurable. If the node is disconnected from the cluster or if unable to

communicate with the node, the data that is queued for that node will remain queued until the

node is available again.

In addition to the UI settings, there are Cluster Node Properties related to load balancing that must

also be configured in Logbot ETL.properties.

Logbot ETL persists the nodes that are in a cluster across restarts. This prevents the redistribution of

data until all of the nodes have connected. If the cluster is shutdown and a node is not intended to be

Logbot ETL User Guide – v2.0

© Logbot 2021 71

brought back up, the user is responsible for removing the node from the cluster via the "Cluster"

dialog in the UI (see Managing Nodes for more information).

Load Balance Compression

After selecting the load balance strategy, the user can configure whether or not data should be

compressed when being transferred between nodes in the cluster.

The following compression options are available:

 Do not compress: FlowFiles will not be compressed. This is the default.

 Compress attributes only: FlowFile attributes will be compressed, but FlowFile contents

will not.

 Compress attributes and content: FlowFile attributes and contents will be compressed.

Load Balance Indicator

When a load balance strategy has been implemented for a connection, a load balance indicator ()

will appear on the connection:

Hovering over the icon will display the connection’s load balance strategy and compression

configuration. The icon in this state also indicates that all data in the connection has been distributed

across the cluster.

Logbot ETL User Guide – v2.0

© Logbot 2021 72

When data is actively being transferred between the nodes in the cluster, the load balance indicator

will change orientation and color:

Cluster Connection Summary

To see where data has been distributed among the cluster nodes, select Summary from the Global

Menu. Then select the "Connections" tab and the "View Connection Details" icon for a source:

This will open the Cluster Connection Summary dialog, which shows the data on each node in the

cluster:

Logbot ETL User Guide – v2.0

© Logbot 2021 73

Prioritization

The right-hand side of the tab provides the ability to prioritize the data in the queue so that higher

priority data is processed first. Prioritizers can be dragged from the top ('Available prioritizers') to the

bottom ('Selected prioritizers'). Multiple prioritizers can be selected. The prioritizer that is at the top

of the 'Selected prioritizers' list is the highest priority. If two FlowFiles have the same value according

to this prioritizer, the second prioritizer will determine which FlowFile to process first, and so on. If a

prioritizer is no longer desired, it can then be dragged from the 'Selected prioritizers' list to the

'Available prioritizers' list.

The following prioritizers are available:

 FirstInFirstOutPrioritizer: Given two FlowFiles, the one that reached the connection first

will be processed first.

 NewestFlowFileFirstPrioritizer: Given two FlowFiles, the one that is newest in the dataflow

will be processed first.

 OldestFlowFileFirstPrioritizer: Given two FlowFiles, the one that is oldest in the dataflow

will be processed first. 'This is the default scheme that is used if no prioritizers are selected'.

 PriorityAttributePrioritizer: Given two FlowFiles, an attribute called “priority” will be

extracted. The one that has the lowest priority value will be processed first.

o Note that an UpdateAttribute processor should be used to add the "priority" attribute

to the FlowFiles before they reach a connection that has this prioritizer set.

o If only one has that attribute it will go first.

o Values for the "priority" attribute can be alphanumeric, where "a" will come before

"z" and "1" before "9"

o If "priority" attribute cannot be parsed as a long, unicode string ordering will be used.

For example: "99" and "100" will be ordered so the flowfile with "99" comes first,

but "A-99" and "A-100" will sort so the flowfile with "A-100" comes first.

With a Load Balance Strategy configured, the connection has a queue per node in addition to the

local queue. The prioritizer will sort the data in each queue independently.

Logbot ETL User Guide – v2.0

© Logbot 2021 74

Changing Configuration and Context Menu Options

After a connection has been drawn between two components, the connection’s configuration may be

changed, and the connection may be moved to a new destination; however, the processors on either

side of the connection must be stopped before a configuration or destination change may be made.

To change a connection’s configuration or interact with the connection in other ways, right-click on

the connection to open the connection context menu.

The following options are available:

Logbot ETL User Guide – v2.0

© Logbot 2021 75

 Configure: This option allows the user to change the configuration of the connection.

 View status history: This option opens a graphical representation of the connection’s

statistical information over time.

 List queue: This option lists the queue of FlowFiles that may be waiting to be processed.

 Go to source: This option can be useful if there is a long distance between the connection’s

source and destination components on the canvas. By clicking this option, the view of the

canvas will jump to the source of the connection.

 Go to destination: Similar to the "Go to source" option, this option changes the view to the

destination component on the canvas and can be useful if there is a long distance between two

connected components.

 Bring to front: This option brings the connection to the front of the canvas if something else

(such as another connection) is overlapping it.

 Empty queue: This option allows the DFM to clear the queue of FlowFiles that may be

waiting to be processed. This option can be especially useful during testing, when the DFM is

not concerned about deleting data from the queue. When this option is selected, users must

confirm that they want to delete the data in the queue.

 Delete: This option allows the DFM to delete a connection between two components. Note

that the components on both sides of the connection must be stopped and the connection must

be empty before it can be deleted.

Bending Connections

To add a bend point (or elbow) to an existing connection, simply double-click on the connection in

the spot where you want the bend point to be. Then, you can use the mouse to grab the bend point and

drag it so that the connection is bent in the desired way. You can add as many bend points as you

want. You can also use the mouse to drag and move the label on the connection to any existing bend

point. To remove a bend point, simply double-click it again.

Logbot ETL User Guide – v2.0

© Logbot 2021 76

Processor Validation

Before trying to start a Processor, it’s important to make sure that the Processor’s configuration is

valid. A status indicator is shown in the top-left of the Processor. If the Processor is invalid, the

indicator will show a yellow Warning indicator with an exclamation mark indicating that there is a

problem:

In this case, hovering over the indicator icon with the mouse will provide a tooltip showing all of the

validation errors for the Processor. Once all of the validation errors have been addressed, the status

indicator will change to a Stop icon, indicating that the Processor is valid and ready to be started but

currently is not running:

Logbot ETL User Guide – v2.0

© Logbot 2021 77

Site-to-Site

When sending data from one instance of Logbot ETL to another, there are many different protocols

that can be used. The preferred protocol, though, is the Logbot ETL Site-to-Site Protocol. Site-to-Site

makes it easy to securely and efficiently transfer data to/from nodes in one Logbot ETL instance or

data producing application to nodes in another Logbot ETL instance or other consuming application.

Using Site-to-Site provides the following benefits:

 Easy to configure

o After entering the URL(s) of the remote Logbot ETL instance/cluster, the available

ports (endpoints) are automatically discovered and provided in a drop-down list.

 Secure

o Site-to-Site optionally makes use of Certificates in order to encrypt data and provide

authentication and authorization. Each port can be configured to allow only specific

users, and only those users will be able to see that the port even exists. For

information on configuring the Certificates, see the Security Configuration section of

the System Administrator’s Guide.

 Scalable

o As nodes in the remote cluster change, those changes are automatically detected and

data is scaled out across all nodes in the cluster.

 Efficient

o Site-to-Site allows batches of FlowFiles to be sent at once in order to avoid the

overhead of establishing connections and making multiple round-trip requests

between peers.

 Reliable

o Checksums are automatically produced by both the sender and receiver and compared

after the data has been transmitted, in order to ensure that no corruption has occurred.

If the checksums don’t match, the transaction will simply be canceled and tried again.

 Automatically load balanced

o As nodes come online or drop out of the remote cluster, or a node’s load becomes

heavier or lighter, the amount of data that is directed to that node will automatically

be adjusted.

 FlowFiles maintain attributes

o When a FlowFile is transferred over this protocol, all of the FlowFile’s attributes are

automatically transferred with it. This can be very advantageous in many situations,

as all of the context and enrichment that has been determined by one instance of

Logbot ETL travels with the data, making for easy routing of the data and allowing

users to easily inspect the data.

 Adaptable

o As new technologies and ideas emerge, the protocol for handling Site-to-Site

communications are able to change with them. When a connection is made to a

remote Logbot ETL instance, a handshake is performed in order to negotiate which

protocol and which version of the protocol will be used. This allows new capabilities

to be added while still maintaining backward compatibility with all older instances.

Additionally, if a vulnerability or deficiency is ever discovered in a protocol, it allows

a newer version of Logbot ETL to forbid communication over the compromised

versions of the protocol.

Site-to-Site is a protocol transferring data between two Logbot ETL instances. Both end can be a

standalone Logbot ETL or a Logbot ETL cluster. In this section, the Logbot ETL instance initiates the

communications is called Site-to-Site client Logbot ETL instance and the other end as Site-to-Site

server Logbot ETL instance to clarify what configuration needed on each Logbot ETL instances.

Logbot ETL User Guide – v2.0

© Logbot 2021 78

A Logbot ETL instance can be both client and server for Site-to-Site protocol, however, it can only be

a client or server within a specific Site-to-Site communication. For example, if there are three Logbot

ETL instances A, B and C. A pushes data to B, and B pulls data from C. A — push → B ← pull — C.

Then B is not only a server in the communication between A and B, but also a client in B and C.

It is important to understand which Logbot ETL instance will be the client or server in order to design

your data flow, and configure each instance accordingly. Here is a summary of what components run

on which side based on data flow direction:

 Push: a client sends data to a Remote Process Group, the server receives it with an Input Port

 Pull: a client receives data from a Remote Process Group, the server sends data through an

Output Port

Configure Site-to-Site client Logbot ETL instance

Remote Process Group: In order to communicate with a remote Logbot ETL instance via Site-to-

Site, simply drag a Remote Process Group onto the canvas and enter the URL(s) of the remote Logbot

ETL instance (for more information on the components of a Remote Process Group, see the Remote

Process Group Transmission section of this guide.) The URL is the same URL you would use to go to

that instance’s User Interface or in the case of a cluster, the URLs of the cluster nodes. At this point,

you can drag a connection to or from the Remote Process Group in the same way you would drag a

connection to or from a Processor or a local Process Group. When you drag the connection, you will

have a chance to choose which Port to connect to. Note that it may take up to one minute for the

Remote Process Group to determine which ports are available.

If the connection is dragged starting from the Remote Process Group, the ports shown will be the

Output Ports of the remote group, as this indicates that you will be pulling data from the remote

instance. If the connection instead ends on the Remote Process Group, the ports shown will be the

Input Ports of the remote group, as this implies that you will be pushing data to the remote instance.

If the remote instance is configured to use secure data transmission, you will see only ports that you

are authorized to communicate with. For information on configuring Logbot ETL to run securely,

see the System Administrator’s Guide.

Transport Protocol: On a Remote Process Group creation or configuration dialog, you can choose

Transport Protocol to use for Site-to-Site communication as shown in the following image:

Logbot ETL User Guide – v2.0

© Logbot 2021 79

By default, it is set to RAW which uses raw socket communication using a dedicated port. HTTP

transport protocol is especially useful if the remote Logbot ETL instance is in a restricted network that

only allow access through HTTP(S) protocol or only accessible from a specific HTTP Proxy server.

For accessing through a HTTP Proxy Server, BASIC and DIGEST authentication are supported.

Local Network Interface: In some cases, it may be desirable to prefer one network interface over

another. For example, if a wired interface and a wireless interface both exist, the wired interface may

be preferred. This can be configured by specifying the name of the network interface to use in this

box. If the value entered is not valid, the Remote Process Group will not be valid and will not

communicate with other Logbot ETL instances until this is resolved.

Configure Site-to-Site Server Logbot ETL Instance

Retrieve Site-to-Site Details: If your Logbot ETL is running securely, in order for another Logbot

ETL instance to retrieve information from your instance, it needs to be added to the Global Access

"retrieve site-to-site details" policy. This will allow the other instance to query your instance for

details such as name, description, available peers (nodes when clustered), statistics, OS port

information and available Input and Output ports. Utilizing Input and Output ports in a secured

instance requires additional policy configuration as described below.

Input Port: In order to allow another Logbot ETL instance to push data to your local instance, you

can simply drag an Input Port onto the Root Process Group of your canvas. After entering a name for

the port, it will be added to your flow. You can now right-click on the Input Port and choose

Configure in order to adjust the name and the number of concurrent tasks that are used for the port.

To create an Input Port for Site-to-Site in a child Process Group, enter the name for the port and select

"Remote connections (site-to-site)" from the Receive From drop-down menu.

Logbot ETL User Guide – v2.0

© Logbot 2021 80

If Site-to-Site is configured to run securely, you will need to manage the input port’s "receive data via

site-to-site" component access policy. Only those users who have been added to the policy will be

able to communicate with the port.

Output Port: Similar to an Input Port, a DataFlow Manager may choose to add an Output Port to the

Root Process Group. The Output Port allows an authorized Logbot ETL instance to remotely connect

to your instance and pull data from the Output Port. After dragging an Output Port onto the canvas,

right-click and choose Configure to adjust the name and how many concurrent tasks are allowed.

Manage the output port’s "receive data via site-to-site" component access policy to control which

users are authorized to pull data from the instance being configured.

To create an Output Port for Site-to-Site in a child Process Group, enter the name for the port and

select "Remote connections (site-to-site)" from the Send To drop-down menu.

Logbot ETL User Guide – v2.0

© Logbot 2021 81

In addition to other instances of Logbot ETL, some other applications may use a Site-to-Site client in

order to push data to or receive data from a Logbot ETL instance. For example, Logbot ETL provides

an Apache Storm spout and an Apache Spark Receiver that are able to pull data from Logbot ETL’s

Output Ports for Site-to-Site connections.

For information on how to enable and configure Site-to-Site on a Logbot ETL instance, see the Site-

to-Site Properties section of the System Administrator’s Guide.

For information on how to configure access policies, see the Access Policies section of the System

Administrator’s Guide.

Logbot ETL User Guide – v2.0

© Logbot 2021 82

Example Dataflow

This section has described the steps required to build a dataflow. Now, to put it all together. The

following example dataflow consists of just two processors: GenerateFlowFile and LogAttribute.

These processors are normally used for testing, but they can also be used to build a quick flow for

demonstration purposes and see Logbot ETL in action.

After you drag the GenerateFlowFile and LogAttribute processors to the canvas and connect them

(using the guidelines provided above), configure them as follows:

 Generate FlowFile

o On the Scheduling tab, set Run schedule to: 5 sec. Note that the GenerateFlowFile

processor can create many FlowFiles very quickly; that’s why setting the Run

schedule is important so that this flow does not overwhelm the system Logbot ETL is

running on.

o On the Properties tab, set File Size to: 10 KB

 Log Attribute

o On the Settings tab, under Auto-terminate relationships, select the checkbox next to

Success. This will terminate FlowFiles after this processor has successfully processed

them.

o Also on the Settings tab, set the Bulletin level to Info. This way, when the dataflow is

running, this processor will display the bulletin icon (see Anatomy of a Processor),

and the user may hover over it with the mouse to see the attributes that the processor

is logging.

The dataflow should look like the following:

Now see the following section on how to start and stop the dataflow. When the dataflow is running,

be sure to note the statistical information that is displayed on the face of each processor (see Anatomy

of a Processor).

Logbot ETL User Guide – v2.0

© Logbot 2021 83

Command and Control of the DataFlow

When a component is added to the Logbot ETL canvas, it is in the Stopped state. In order to cause the

component to be triggered, the component must be started. Once started, the component can be

stopped at any time. From a Stopped state, the component can be configured, started, or disabled.

Logbot ETL User Guide – v2.0

© Logbot 2021 84

Starting a Component

In order to start a component, the following conditions must be met:

 The component’s configuration must be valid.

 All defined Relationships for the component must be connected to another component or

auto-terminated.

 The component must be stopped.

 The component must be enabled.

 The component must have no active tasks. For more information about active tasks, see the

"Anatomy of …" sections under Monitoring of DataFlow (Anatomy of a Processor, Anatomy

of a Process Group, Anatomy of a Remote Process Group).

Components can be started by selecting all of the components to start and then clicking the "Start"

button () in the Operate Palette or by right-clicking a single component and choosing Start from

the context menu.

If starting a Process Group, all components within that Process Group (including child Process

Groups) will be started, with the exception of those components that are invalid or disabled.

Once started, the status indicator of a Processor will change to a Play symbol ().

Logbot ETL User Guide – v2.0

© Logbot 2021 85

Stopping a Component

A component can be stopped any time that it is running. A component is stopped by right-clicking on

the component and clicking Stop from the context menu, or by selecting the component and clicking

the "Stop" button () in the Operate Palette.

If a Process Group is stopped, all of the components within the Process Group (including child

Process Groups) will be stopped.

Once stopped, the status indicator of a component will change to the Stop symbol ().

Stopping a component does not interrupt its currently running tasks. Rather, it stops scheduling new

tasks to be performed. The number of active tasks is shown in the top-right corner of the Processor

(See Anatomy of a Processor for more information). See Terminating a Component’s tasks for how to

terminate the running tasks.

Logbot ETL User Guide – v2.0

© Logbot 2021 86

Terminating a Component’s tasks

When a component is stopped, it does not interrupt the currently running tasks. This allows for the

current execution to complete while no new tasks are scheduled, which is the desired behaviour in

many cases. In some cases, it is desirable to terminate the running tasks, particularly in cases where a

task has hung and is no longer responsive, or while developing new flows.

To be able to terminate the running task(s), the component must first be stopped (see Stopping a

Component). Once the component is in the Stopped state, the Terminate option will become available

only if there are tasks still running (See Anatomy of a Processor). The Terminate option () can

be accessed either via the context menu or the Operations Palette while the component is selected.

The number of tasks that are actively being terminated will be displayed in parentheses next to the

number of active tasks e.g. . For example, if there is one active task at the time that

Terminate is selected, this will display "0 (1)" - meaning 0 active tasks and 1 task being terminated.

A task may not terminate immediately, as different components may respond to the Terminate

command differently. However, the components can be reconfigured and started/stopped regardless of

whether there are tasks still in the terminating state.

Logbot ETL User Guide – v2.0

© Logbot 2021 87

Enabling/Disabling a Component

When a component is enabled, it is able to be started. Users may choose to disable components when

they are part of a dataflow that is still being assembled, for example. Typically, if a component is not

intended to be run, the component is disabled, rather than being left in the Stopped state. This helps to

distinguish between components that are intentionally not running and those that may have been

stopped temporarily (for instance, to change the component’s configuration) and inadvertently were

never restarted.

When it is desirable to re-enable a component, it can be enabled by selecting the component and

clicking the "Enable" button () in the Operate Palette. This is available only when the selected

component or components are disabled. Alternatively, a component can be enabled by checking the

checkbox next to the "Enabled" option in the Settings tab of the Processor configuration dialog or the

configuration dialog for a Port.

Once enabled, the component’s status indicator will change to either Invalid () or Stopped (),

depending on whether or not the component is valid.

A component is then disabled by selecting the component and clicking the "Disable" button () in

the Operate Palette, or by clearing the checkbox next to the "Enabled" option in the Settings tab of the

Processor configuration dialog or the configuration dialog for a Port.

Only Ports and Processors can be enabled and disabled.

Logbot ETL User Guide – v2.0

© Logbot 2021 88

Remote Process Group Transmission

Remote Process Groups provide a mechanism for sending data to or retrieving data from a remote

instance of Logbot ETL. When a Remote Process Group (RPG) is added to the canvas, it is added

with the Transmission Disabled, as indicated by the icon () in the top-left corner. When

Transmission is Disabled, it can be enabled by right-clicking on the RPG and clicking the "Enable

transmission" menu item. This will cause all ports for which there is a Connection to begin

transmitting data. This will cause the status indicator to then change to the Transmission Enabled icon

().

If there are problems communicating with the Remote Process Group, a Warning indicator () may

instead be present in the top-left corner. Hovering over this Warning indicator with the mouse will

provide more information about the problem.

Individual Port Transmission

There are times when the DFM may want to either enable or disable transmission for only a specific

port within the Remote Process Group. This can be accomplished by right-clicking on the Remote

Process Group and choosing the "Manage remote ports" menu item. This provides a configuration

dialog from which ports can be configured:

The left-hand side lists all of the Input Ports that the remote instance of Logbot ETL allows data to be

sent to. The right-hand side lists all of the Output Ports from which this instance is able to pull data. If

the remote instance is using secure communications (the URL of the Logbot ETL instance begins with

https://, rather than http://), any ports that the remote instance has not made available to this

instance will not be shown.

If a port that is expected to be shown is not shown in this dialog, ensure that the instance has proper

permissions and that the Remote Process Group’s flow is current. This can be checked by closing

the Remote Process Group Ports dialog and looking at the bottom-left corner of the Remote Process

Group. The date and time when the flow was last refreshed is displayed. If the flow appears to be

Logbot ETL User Guide – v2.0

© Logbot 2021 89

outdated, it can be updated by right-clicking on the Remote Process Group and selecting "Refresh

remote". (See Anatomy of a Remote Process Group for more information).

Each port is shown with its Name, its Description, configured number of Concurrent Tasks, and

whether or not data sent to this port will be Compressed. Additionally, the port’s configured Batch

Settings (Count, Size and Duration) are displayed. To the left of this information is a toggle switch to

turn the port on or off. Ports that have no connections attached to them are grayed out:

The on/off toggle switch provides a mechanism to enable and disable transmission for each port in the

Remote Process Group independently. Those ports that are connected but are not currently

transmitting can be configured by clicking the pencil icon () below the on/off toggle switch.

Clicking this icon will allow the DFM to change the number of Concurrent Tasks, whether or not

compression should be used when transmitting data to or from this port, and Batch Settings.

For an Input Port, the batch settings control how Logbot ETL sends data to the remote input port in a

transaction. Logbot ETL will transfer flow files, as they are queued in incoming relationships, until

any of the limits (Count, Size, Duration) is met. If none of the settings are configured, a 500

milliseconds batch duration is used by default.

For an Output Port, the batch settings tells the remote Logbot ETL how Logbot ETL prefers to receive

data from the remote output port in a transaction. The remote Logbot ETL will use the specified

settings (Count, Size, Duration) to control the transfer of flow files. If none of the settings are

configured, a 5 seconds batch duration is used by default.

Logbot ETL User Guide – v2.0

© Logbot 2021 90

Navigating within a DataFlow

Logbot ETL provides various mechanisms for getting around a dataflow. The Logbot ETL User

Interface section describes various ways to navigate around the Logbot ETL canvas; however, once a

flow exists on the canvas, there are additional ways to get from one component to another. When

multiple Process Groups exist in a flow, breadcrumbs appear at the bottom of the screen, providing a

way to navigate between them. In addition, to enter a Process Group that is currently visible on the

canvas, simply double-click it, thereby "drilling down" into it. Connections also provide a way to

jump from one location to another within the flow. Right-click on a connection and select "Go to

source" or "Go to destination" in order to jump to one end of the connection or another. This can be

very useful in large, complex dataflows, where the connection lines may be long and span large areas

of the canvas. Finally, all components provide the ability to jump forward or backward within the

flow. Right-click any component (e.g., a processor, process group, port, etc.) and select either

"Upstream connections" or "Downstream connections". A dialog window will open, showing the

available upstream or downstream connections that the user may jump to. This can be especially

useful when trying to follow a dataflow in a backward direction. It is typically easy to follow the path

of a dataflow from start to finish, drilling down into nested process groups; however, it can be more

difficult to follow the dataflow in the other direction.

Logbot ETL User Guide – v2.0

© Logbot 2021 91

Component Linking

A hyperlink can be used to navigate directly to a component on the Logbot ETL canvas. This is

especially useful when Multi-Tenant Authorization is configured. For example, a URL can be given

to a user to direct them to the specific process group to which they have privileges.

The default URL for a Logbot ETL instance is http://<hostname>:8080/Logbot ETL, which points

to the root process group. When a component is selected on the canvas, the URL is updated with the

component’s process group id and component id in the form http://<hostname>:8080/Logbot

ETL/?processGroupId=<UUID>&componentIds=<UUIDs>;. In the following screenshot, the

GenerateFlowFile processor in the process group PG1 is the selected component:

Linking to multiple components on the canvas is supported, with the restriction that the length of the

URL cannot exceed a 2000 character limit.

Logbot ETL User Guide – v2.0

© Logbot 2021 92

Component Alignment

Components on the Logbot ETL canvas can be aligned to more precisely arrange your dataflow. To

do this, first select all the components you want to align. Then right-click to see the context menu and

select “Align vertically” or “Align horizontally” depending on your desired result.

Align Vertically

Here is an example of aligning components vertically on your canvas. With all components

selected/highlighted, right-click:

and select "Align vertically" to achieve these results:

Logbot ETL User Guide – v2.0

© Logbot 2021 93

Align Horizontally

Here is an example of aligning components horizontally on your canvas. With all components

selected/highlighted, right-click:

Logbot ETL User Guide – v2.0

© Logbot 2021 94

and select "Align horizontally" to achieve these results:

Logbot ETL User Guide – v2.0

© Logbot 2021 95

Search Components in DataFlow

Logbot ETL UI provides searching functionality in order to help easily find components on the

canvas. You can use search to find components by name, type, identifier, configuration properties,

and their values. Search also makes it possible to refine and narrow the search result based on certain

conditions using Filters and Keywords.

Example 1: The result will contain components that match for "processor1".

processor1

Logbot ETL User Guide – v2.0

© Logbot 2021 96

Filters

Filters can be added to the search box as key-value pairs where the keys are predefined and check

certain conditions based on the given value. The syntax is "key:value".

Example 2: The search will be executed under Process Groups (directly or via contained Process

Groups) containing the string "myGroup" in their name or id. The result will contain components that

match for "processor1".

group:myGroup processor1

Filters can be used together with other search terms and multiple filters can be used. The only

constraint is that the search must start with the filters. Unknown filters or known filters with unknown

values are ignored. If the same filter key appears multiple times, the first will be used. The order of

different filters has no effect on the result.

Example 3: Search will be restricted to the currently active process group (and process groups within

that). The result will contain components that match for "import" but property matches will be

excluded.

scope:here properties:exclude import

The supported filters are the following:

scope: This filter narrows the scope of the search based on the user’s currently active Process Group.

The only valid value is "here". The usage of this filter looks like "scope:here". Any other value is

considered as invalid, thus the filter will be ignored during search.

group: This filter narrows the scope of the search based on the provided Process Group name or id.

Search will be restricted to groups (and their components - including subgroups and their

components) the names or ids of which match the filter value. If no group matches the filter, the result

list will be empty.

properties: With this, users can prevent property matches to appear in the search result. Valid values

are: "no", "none", "false", "exclude" and "0".

Logbot ETL User Guide – v2.0

© Logbot 2021 97

Keywords

Users can use pre-defined (case-insensitive) keywords in the search box that will check certain

conditions.

Example 4: "disabled" will be treated both as keyword and regular search term. The result will contain

disabled Ports and Processors as all other components that match for "disabled" in any way.

disabled

Keywords can be used with filters (see below) but not with other search terms (otherwise they won’t

be treated as keywords) and only one keyword can be used at a time. Note however that keywords

will also be treated as general search terms at the same time.

Example 5: Search will be restricted to the currently selected process group (and its sub process

groups). "invalid" here (as it is alone after the filter) will be treated both as a keyword and a regular

search term. The result will contain invalid Processors and Ports as well as all other components that

match for "invalid" in any way.

scope:here invalid

The supported keywords are the following:

 Scheduled state
o disabled: Adds disabled Ports and Processors to the result list.

o invalid: Adds Ports and Processors to the result list where the component is invalid.

o running: Adds running Ports and Processors to the result list.

o stopped: Adds stopped Ports and Processors to the result list.

o validating: Adds Processors to the result list that are validating at the time.

 Scheduling strategy
o event: Adds Processors to the result list where the Scheduling Strategy is "Event

Driven".

o timer: Adds Processors to the result list where the Scheduling Strategy is "Timer

Driven".

 Execution
o primary: Adds Processors to the result list that are set to run on the primary node

only (whether if the Processor is currently running or not).

 Back pressure
o back pressure: Adds Connections to the result list that are applying back pressure at

the time.

o pressure: See "back pressure".

 Expiration
o expiration: Adds Connections to the result list that contain expired Flow Files.

o expires: See "expiration".

 Transmission
o not transmitting: Adds Remote Process Groups to the result list that are not

transmitting data at the time.

o transmitting: Adds Remote Process Groups to the result list that are transmitting

data at the time.

o transmission disabled: See "not transmitting".

o transmitting enabled: See "transmitting".

Logbot ETL User Guide – v2.0

© Logbot 2021 98

Monitoring of DataFlow

Logbot ETL provides a great deal of information about the DataFlow in order to monitor its health

and status. The Status bar provides information about the overall system health (see Logbot ETL User

Interface). Processors, Process Groups, and Remote Process Groups provide fine-grained details about

their operations. Connections and Process Groups provide information about the amount of data in

their queues. The Summary Page provides information about all of the components on the canvas in a

tabular format and also provides System Diagnostics that include disk usage, CPU utilization, and

Java Heap and Garbage Collection information. In a clustered environment, this information is

available per-node or as aggregates across the entire cluster. We will explore each of these monitoring

artifacts below.

Logbot ETL User Guide – v2.0

© Logbot 2021 99

Anatomy of a Processor

Logbot ETL provides a sigLogbot ETLcant amount of information about each Processor on the

canvas. The following diagram shows the anatomy of a Processor:

The image outlines the following elements:

 Processor Type: Logbot ETL provides several different types of Processors in order to allow

for a wide range of tasks to be performed. Each type of Processor is designed to perform one

specific task. The Processor type (PutFile, in this example) describes the task that this

Processor performs. In this case, the Processor writes a FlowFile to disk - or "Puts" a

FlowFile to a File.

 Bulletin Indicator: When a Processor logs that some event has occurred, it generates a

Bulletin to notify those who are monitoring Logbot ETL via the User Interface. The DFM is

able to configure which bulletins should be displayed in the User Interface by updating the

"Bulletin level" field in the "Settings" tab of the Processor configuration dialog. The default

value is WARN, which means that only warnings and errors will be displayed in the UI. This

icon is not present unless a Bulletin exists for this Processor. When it is present, hovering

over the icon with the mouse will provide a tooltip explaining the message provided by the

Processor as well as the Bulletin level. If the instance of Logbot ETL is clustered, it will also

show the Node that emitted the Bulletin. Bulletins automatically expire after five minutes.

 Status Indicator: Shows the current Status of the Processor. The following indicators are

possible:

o Running: The Processor is currently running.

o Stopped: The Processor is valid and enabled but is not running.

o Invalid: The Processor is enabled but is not currently valid and cannot be started.

Hovering over this icon will provide a tooltip indicating why the Processor is not

valid.

o Disabled: The Processor is not running and cannot be started until it has been

enabled. This status does not indicate whether or not the Processor is valid.

 Processor Name: This is the user-defined name of the Processor. By default, the name of the

Processor is the same as the Processor Type. In the example, this value is "Copy to /review".

 Active Tasks: The number of tasks that this Processor is currently executing. This number is

constrained by the "Concurrent tasks" setting in the "Scheduling" tab of the Processor

configuration dialog. Here, we can see that the Processor is currently performing one task. If

the Logbot ETL instance is clustered, this value represents the number of tasks that are

currently executing across all nodes in the cluster.

 5-Minute Statistics: The Processor shows several different statistics in tabular form. Each of

these statistics represents the amount of work that has been performed in the past five

Logbot ETL User Guide – v2.0

© Logbot 2021 100

minutes. If the Logbot ETL instance is clustered, these values indicate how much work has

been done by all of the Nodes combined in the past five minutes. These metrics are:

o In: The amount of data that the Processor has pulled from the queues of its incoming

Connections. This value is represented as <count> (<size>) where <count> is the

number of FlowFiles that have been pulled from the queues and <size> is the total

size of those FlowFiles' content. In this example, the Processor has pulled 29

FlowFiles from the input queues, for a total of 14.16 megabytes (MB).

o Read/Write: The total size of the FlowFile content that the Processor has read from

disk and written to disk. This provides valuable information about the I/O

performance that this Processor requires. Some Processors may only read the data

without writing anything while some will not read the data but will only write data.

Others will neither read nor write data, and some Processors will both read and write

data. In this example, we see that in the past five minutes, this Processor has read

4.88 MB of the FlowFile content and has written 4.88 MB as well. This is what we

would expect, since this Processor simply copies the contents of a FlowFile to disk.

Note, however, that this is not the same as the amount of data that it pulled from its

input queues. This is because some of the files that it pulled from the input queues

already exist in the output directory, and the Processor is configured to route

FlowFiles to failure when this occurs. Therefore, for those files which already existed

in the output directory, data was neither read nor written to disk.

o Out: The amount of data that the Processor has transferred to its outbound

Connections. This does not include FlowFiles that the Processor removes itself, or

FlowFiles that are routed to connections that are auto-terminated. Like the "In" metric

above, this value is represented as <count> (<size>) where <count> is the number of

FlowFiles that have been transferred to outbound Connections and <size> is the total

size of those FlowFiles' content. In this example, all of the Relationships are

configured to be auto-terminated, so no FlowFiles are reported as having been

transferred Out.

o Tasks/Time: The number of times that this Processor has been triggered to run in the

past 5 minutes, and the amount of time taken to perform those tasks. The format of

the time is <hour>:<minute>:<second>. Note that the amount of time taken can

exceed five minutes, because many tasks can be executed in parallel. For instance, if

the Processor is scheduled to run with 60 Concurrent tasks, and each of those tasks

takes one second to complete, it is possible that all 60 tasks will be completed in a

single second. However, in this case we will see the Time metric showing that it took

60 seconds, instead of 1 second. This time can be thought of as "System Time," or

said another way, this value is 60 seconds because that’s the amount of time it would

have taken to perform the action if only a single concurrent task were used.

Logbot ETL User Guide – v2.0

© Logbot 2021 101

Anatomy of a Process Group

The Process Group provides a mechanism for grouping components together into a logical construct

in order to organize the DataFlow in a way that makes it more understandable from a higher level.

The following image highlights the different elements that make up the anatomy of a Process Group:

The Process Group consists of the following elements:

 Name: This is the user-defined name of the Process Group. This name is set when the Process

Group is added to the canvas. The name can later by changed by right-clicking on the Process

Group and clicking the "Configure" menu option. In this example, the name of the Process

Group is "Process Group ABC."

 Bulletin Indicator: When a child component of a Process Group emits a bulletin, that

bulletin is propagated to the component’s parent Process Group, as well. When any

component has an active Bulletin, this indicator will appear, allowing the user to hover over

the icon with the mouse to see the Bulletin.

 Active Tasks: The number of tasks that are currently executing by the components within this

Process Group. Here, we can see that the Process Group is currently performing two tasks. If

the Logbot ETL instance is clustered, this value represents the number of tasks that are

currently executing across all nodes in the cluster.

 Statistics: Process Groups provide statistics about the amount of data that has been processed

by the Process Group in the past 5 minutes as well as the amount of data currently enqueued

within the Process Group. The following elements comprise the "Statistics" portion of a

Process Group:

o Queued: The number of FlowFiles currently enqueued within the Process Group.

This field is represented as <count> (<size>) where <count> is the number of

FlowFiles that are currently enqueued in the Process Group and <size> is the total

size of those FlowFiles' content. In this example, the Process Group currently has 26

FlowFiles enqueued with a total size of 12.7 megabytes (MB).

o In: The number of FlowFiles that have been transferred into the Process Group

through all of its Input Ports over the past 5 minutes. This field is represented as

<count> / <size> → <ports> where <count> is the number of FlowFiles that have

entered the Process Group in the past 5 minutes, <size> is the total size of those

FlowFiles' content and <ports> is the number of Input Ports. In this example, 8

FlowFiles have entered the Process Group with a total size of 800 KB and two Input

Ports exist.

o Read/Write: The total size of the FlowFile content that the components within the

Process Group have read from disk and written to disk. This provides valuable

information about the I/O performance that this Process Group requires. In this

Logbot ETL User Guide – v2.0

© Logbot 2021 102

example, we see that in the past five minutes, components within this Process Group

have read 14.72 MB of the FlowFile content and have written 14.8 MB.

o Out: The number of FlowFiles that have been transferred out of the Process Group

through its Output Ports over the past 5 minutes. This field is represented as <ports>

→ <count> (<size>) where <ports> is the number of Output Ports, <count> is the

number of FlowFiles that have exited the Process Group in the past 5 minutes and

<size> is the total size of those FlowFiles' content. In this example, there are three

Output Ports, 16 FlowFiles have exited the Process Group and their total size is 78.57

KB.

 Component Counts: The Component Counts element provides information about how many

components of each type exist within the Process Group. The following provides information

about each of these icons and their meanings:

o Transmitting Ports: The number of Remote Process Group Ports that currently

are configured to transmit data to remote instances of Logbot ETL or pull data from

remote instances of Logbot ETL.

o Non-Transmitting Ports: The number of Remote Process Group Ports that are

currently connected to components within this Process Group but currently have their

transmission disabled.

o Running Components: The number of Processors, Input Ports, and Output Ports

that are currently running within this Process Group.

o Stopped Components: The number of Processors, Input Ports, and Output Ports

that are currently not running but are valid and enabled. These components are ready

to be started.

o Invalid Components: The number of Processors, Input Ports, and Output Ports

that are enabled but are currently not in a valid state. This may be due to

misconfigured properties or missing Relationships.

o Disabled Components: The number of Processors, Input Ports, and Output Ports

that are currently disabled. These components may or may not be valid. If the Process

Group is started, these components will not cause any errors but will not be started.

 Version State Counts: The Version State Counts element provides information about how

many versioned process groups are within the Process Group. See Version States for more

information.

 Comments: When the Process Group is added to the canvas, the user is given the option of

specifying Comments in order to provide information about the Process Group. The

comments can later be changed by right-clicking on the Process Group and clicking the

"Configure" menu option.

Logbot ETL User Guide – v2.0

© Logbot 2021 103

Anatomy of a Remote Process Group

When creating a DataFlow, it is often necessary to transfer data from one instance of Logbot ETL to

another. In this case, the remote instance of Logbot ETL can be thought of as a Process Group. For

this reason, Logbot ETL provides the concept of a Remote Process Group. From the User Interface,

the Remote Process Group looks similar to the Process Group. However, rather than showing

information about the inner workings and state of a Remote Process Group, such as queue sizes, the

information rendered about a Remote Process Group is related to the interaction that occurs between

this instance of Logbot ETL and the remote instance.

The image above shows the different elements that make up a Remote Process Group. Here, we

provide an explanation of the icons and details about the information provided.

 Transmission Status: The Transmission Status indicates whether or not data Transmission

between this instance of Logbot ETL and the remote instance is currently enabled. The icon

shown will be the Transmission Enabled icon () if any of the Input Ports or Output Ports is

currently configured to transmit or the Transmission Disabled icon () if all of the Input

Ports and Output Ports that are currently connected are stopped.

 Remote Instance Name: This is the name of the Logbot ETL instance that was reported by

the remote instance. When the Remote Process Group is first created, before this information

has been obtained, the URL(s) of the remote instance will be shown here instead.

 Remote Instance URL: This is the URL of the remote instance that the Remote Process

Group points to. This URL is entered when the Remote Process Group is added to the canvas

and it cannot be changed.

 Secure Indicator: This icon indicates whether or not communications with the remote

Logbot ETL instance are secure. If communications with the remote instance are secure, this

will be indicated by the "Locked" icon (). If the communications are not secure, this will

be indicated by the "Unlocked" icon (). If the communications are secure, this instance

of Logbot ETL will not be able to communicate with the remote instance until an

administrator for the remote instance grants access. Whenever the Remote Process Group is

added to the canvas, this will automatically initiate a request to have a user for this instance of

Logbot ETL created on the remote instance. This instance will be unable to communicate

with the remote instance until an administrator on the remote instance adds the user to the

system and adds the "Logbot ETL" role to the user. In the event that communications are not

secure, the Remote Process Group is able to receive data from anyone, and the data is not

encrypted while it is transferred between instances of Logbot ETL.

 5-Minute Statistics: Two statistics are shown for Remote Process Groups: Sent and

Received. Both of these are in the format <count> (<size>) where <count> is the number of

Logbot ETL User Guide – v2.0

© Logbot 2021 104

FlowFiles that have been sent or received in the previous five minutes and <size> is the total

size of those FlowFiles' content.

 Last Refresh Time: The information that is pulled from a remote instance and rendered on

the Remote Process Group in the User Interface is periodically refreshed in the background.

This element indicates the time at which that refresh last happened, or if the information has

not been refreshed for a sigLogbot ETLcant amount of time, the value will change to indicate

Remote flow not current. Logbot ETL can be triggered to initiate a refresh of this information

by right-clicking on the Remote Process Group and choosing the "Refresh remote" menu

item.

Logbot ETL User Guide – v2.0

© Logbot 2021 105

Queue Interaction

The FlowFiles enqueued in a Connection can be viewed when necessary. The Queue listing is opened

via List queue in a Connection’s context menu. The listing will return the top 100 FlowFiles in the

active queue according to the configured priority. The listing can be performed even if the source and

destination are actively running.

Additionally, details for a Flowfile in the listing can be viewed by clicking the "Details" button ()

in the left most column. From here, the FlowFile details and attributes are available as well as buttons

for downloading or viewing the content. Viewing the content is only available if the Logbot

ETL.content.viewer.url has been configured. If the source or destination of the Connection are

actively running, there is a chance that the desired FlowFile will no longer be in the active queue.

The FlowFiles enqueued in a Connection can also be deleted when necessary. The removal of the

FlowFiles is initiated via Empty queue in the Connection’s context menu. This action can also be

performed if the source and destination are actively running.

If the analytics prediction feature is enabled, hovering over the queue will also reveal predicted

statistics on when the queue may encounter back pressure, either due to the object count or content

size meeting the current threshold settings. Predictions will only be available when Logbot ETL has

enough data in its internal repository and if its model is accurate enough to broadcast a prediction. For

more information, see the Analytics Framework section in the System Administrator’s Guide.

Logbot ETL User Guide – v2.0

© Logbot 2021 106

Summary Page

While the Logbot ETL canvas is useful for understanding how the configured DataFlow is laid out,

this view is not always optimal when trying to discern the status of the system. In order to help the

user understand how the DataFlow is functioning at a higher level, Logbot ETL provides a Summary

page. This page is available in the Global Menu in the top-right corner of the User Interface. See the

Logbot ETL User Interface section for more information about the location of this toolbar.

The Summary Page is opened by selecting Summary from the Global Menu. This opens the Summary

table dialog:

This dialog provides a great deal of information about each of the components on the canvas. Below,

we have annotated the different elements within the dialog in order to make the discussion of the

dialog easier.

Logbot ETL User Guide – v2.0

© Logbot 2021 107

The Summary page is primarily comprised of a table that provides information about each of the

components on the canvas. Above this table is a set of five tabs that can be used to view the different

types of components. The information provided in the table is the same information that is provided

for each component on the canvas. Each of the columns in the table may be sorted by clicking on the

heading of the column. For more on the types of information displayed, see the sections Anatomy of a

Processor, Anatomy of a Process Group, and Anatomy of a Remote Process Group above.

The Summary page also includes the following elements:

 Bulletin Indicator: As in other places throughout the User Interface, when this icon is

present, hovering over the icon will provide information about the Bulletin that was

generated, including the message, the severity level, the time at which the Bulletin was

generated, and (in a clustered environment) the node that generated the Bulletin. Like all the

columns in the Summary table, this column where bulletins are shown may be sorted by

clicking on the heading so that all the currently existing bulletins are shown at the top of the

list.

 Details: Clicking the Details icon will provide the user with the details of the component.

This dialog is the same as the dialog provided when the user right-clicks on the component

and chooses the "View Configuration" menu item.

 Go To: Clicking this button will close the Summary page and take the user directly to the

component on the Logbot ETL canvas. This may change the Process Group that the user is

currently in. This icon is not available if the Summary page has been opened in a new

browser tab or window (by clicking the "Pop Out" button, as described below).

 Status History: Clicking the Status History icon will open a new dialog that shows a

historical view of the statistics that are rendered for this component. See the section Historical

Statistics of a Component for more information.

 Refresh: The "Refresh" button allows the user to refresh the information displayed without

closing the dialog and opening it again. The time at which the information was last refreshed

is shown just to the right of the "Refresh" button. The information on the page is not

automatically refreshed.

 Filter: The Filter element allows users to filter the contents of the Summary table by typing in

all or part of some criteria, such as a Processor Type or Processor Name. The types of filters

available differ according to the selected tab. For instance, if viewing the Processor tab, the

user is able to filter by name or by type. When viewing the Connections tab, the user is able to

filter by source, by name, or by destination name. The filter is automatically applied when the

contents of the text box are changed. Below the text box is an indicator of how many entries

in the table match the filter and how many entries exist in the table.

 Pop-Out: When monitoring a flow, it is helpful to be able to open the Summary table in a

separate browser tab or window. The "Pop Out" button, next to the "Close" button, will cause

the entire Summary dialog to be opened in a new browser tab or window (depending on the

configuration of the browser). Once the page is "popped out", the dialog is closed in the

original browser tab/window. In the new tab/window, the "Pop Out" button and the "Go To"

button will no longer be available.

 System Diagnostics: The System Diagnostics window provides information about how the

system is performing with respect to system resource utilization. While this is intended

mostly for administrators, it is provided in this view because it does provide a summary of the

system. This dialog shows information such as CPU utilization, how full the disks are, and

Java-specific metrics, such as memory size and utilization, as well as Garbage Collection

information.

Logbot ETL User Guide – v2.0

© Logbot 2021 108

Historical Statistics of a Component

While the Summary table and the canvas show numeric statistics pertaining to the performance of a

component over the past five minutes, it is often useful to have a view of historical statistics as well.

This information is available by right-clicking on a component and choosing the "Status History"

menu option or by clicking on the Status History in the Summary page (see Summary Page for more

information).

The amount of historical information that is stored is configurable in the Logbot ETL properties but

defaults to 24 hours. For specific configuration information reference the Component Status

Repository of the System Administrator’s Guide. When the Status History dialog is opened, it

provides a graph of historical statistics:

The left-hand side of the dialog provides information about the component that the stats are for, as

well as a textual representation of the statistics being graphed. The following information is provided

on the left-hand side:

 Id: The ID of the component for which the stats are being shown.

 Group Id: The ID of the Process Group in which the component resides.

 Name: The Name of the Component for which the stats are being shown.

 Component-Specific Entries: Information is shown for each different type of component.

For example, for a Processor, the type of Processor is displayed. For a Connection, the source

and destination names and IDs are shown.

 Start: The earliest time shown on the graph.

 End: The latest time shown on the graph.

 Min/Max/Mean: The minimum, maximum, and mean (arithmetic mean, or average) values

are shown. These values are based only on the range of time selected, if any time range is

Logbot ETL User Guide – v2.0

© Logbot 2021 109

selected. If this instance of Logbot ETL is clustered, these values are shown for the cluster as

a whole, as well as each individual node. In a clustered environment, each node is shown in a

different color. This also serves as the graph’s legend, showing the color of each node that is

shown in the graph. Hovering the mouse over the Cluster or one of the nodes in the legend

will also make the corresponding node bold in the graph.

The right-hand side of the dialog provides a drop-down list of the different types of metrics to render

in the graphs below. The top graph is larger so as to provide an easier-to-read rendering of the

information. In the bottom-right corner of this graph is a small handle () that can be dragged to

resize the graph. The blank areas of the dialog can also be dragged around to move the entire dialog.

The bottom graph is much shorter and provides the ability to select a time range. Selecting a time

range here will cause the top graph to show only the time range selected, but in a more detailed

manner. Additionally, this will cause the Min/Max/Mean values on the left-hand side to be

recalculated. Once a selection has been created by dragging a rectangle over the graph, double-

clicking on the selected portion will cause the selection to fully expand in the vertical direction (i.e., it

will select all values in this time range). Clicking on the bottom graph without dragging will remove

the selection.

Logbot ETL User Guide – v2.0

© Logbot 2021 110

Templates

DFMs have the ability to build very large and complex DataFlows using Logbot ETL. This is

achieved by using the basic components: Processor, Funnel, Input/Output Port, Process Group, and

Remote Process Group. These can be thought of as the most basic building blocks for constructing a

DataFlow. At times, though, using these small building blocks can become tedious if the same logic

needs to be repeated several times.

To solve this issue, Logbot ETL provides the concept of a Template. A Template is a way of

combining these basic building blocks into larger building blocks. Once a DataFlow has been created,

parts of it can be formed into a Template. This Template can then be dragged onto the canvas, or can

be exported as an XML file and shared with others. Templates received from others can then be

imported into an instance of Logbot ETL and dragged onto the canvas.

Logbot ETL User Guide – v2.0

© Logbot 2021 111

Creating a Template

To create a Template, select the components that are to be a part of the template, and then click the

"Create Template" () button in the Operate Palette (See Logbot ETL User Interface for more

information on the Operate Palette).

Clicking this button without selecting anything will create a Template that contains all of the contents

of the current Process Group. This means that creating a Template with nothing selected while on the

Root Process Group will create a single Template that contains the entire flow.

After clicking this button, the user is prompted to provide a name and an optional description for the

template. Each template must have a unique name. After entering the name and optional description,

clicking the "Create" button will generate the template and notify the user that the template was

successfully created, or provide an appropriate error message if unable to create the template for some

reason.

It is important to note that if any Processor that is Templated has a sensitive property (such as a

password), the value of that sensitive property is not included in the Template. As a result, when

dragging the Template onto the canvas, newly created Processors may not be valid if they are

missing values for their sensitive properties. Additionally, any Connection that was selected when

making the Template is not included in the Template if either the source or the destination of the

Connection is not also included in the Template.

Logbot ETL User Guide – v2.0

© Logbot 2021 112

Importing a Template

After receiving a Template that has been exported from another Logbot ETL, the first step needed to

use the template is to import the template into this instance of Logbot ETL. You may import

templates into any Process Group where you have the appropriate authorization.

From the Operate Palette, click the "Upload Template" () button (see Logbot ETL User Interface

for more information on the Operate Palette). This will display the Upload Template dialog. Click the

find icon and use the File Selection dialog to choose which template file to upload. Select the file and

click Open. Clicking the "Upload" button will attempt to import the Template into this instance of

Logbot ETL. The Upload Template dialog will update to show "Success" or an error message if there

was a problem importing the template.

Logbot ETL User Guide – v2.0

© Logbot 2021 113

Instantiating a Template

Once a Template has been created (see Creating a Template) or imported (see Importing a Template),

it is ready to be instantiated, or added to the canvas. This is accomplished by dragging the Template

icon () from the Components Toolbar (see Logbot ETL User Interface) onto the canvas.

This will present a dialog to choose which Template to add to the canvas. After choosing the

Template to add, simply click the "Add" button. The Template will be added to the canvas with the

upper-left-hand side of the Template being placed wherever the user dropped the Template icon.

This leaves the contents of the newly instantiated Template selected. If there was a mistake, and this

Template is no longer wanted, it may be deleted.

Logbot ETL User Guide – v2.0

© Logbot 2021 114

Managing Templates

One of the most powerful features of Logbot ETL Templates is the ability to easily export a Template

to an XML file and to import a Template that has already been exported. This provides a very simple

mechanism for sharing parts of a DataFlow with others. You can select Templates from the Global

Menu (see Logbot ETL User Interface) to open a dialog that displays all of the Templates that are

currently available, filter the templates to see only those of interest, export, and delete Templates.

Exporting a Template

Once a Template has been created, it can be shared with others in the Template Management page. To

export a Template, locate the Template in the table. The Filter in the top-right corner can be used to

help find the appropriate Template if several are available. Then click the "Download" button ().

This will download the template as an XML file to your computer. This XML file can then be sent to

others and imported into other instances of Logbot ETL (see Importing a Template).

Removing a Template

Once it is decided that a Template is no longer needed, it can be easily removed from the Template

Management page. To delete a Template, locate it in the table (the Filter in the top-right corner may

be used to find the appropriate Template if several are available) and click the "Delete" button ().

This will prompt for confirmation. After confirming the deletion, the Template will be removed from

this table and will no longer be available to add to the canvas.

Logbot ETL User Guide – v2.0

© Logbot 2021 115

Data Provenance

While monitoring a dataflow, users often need a way to determine what happened to a particular data

object (FlowFile). Logbot ETL’s Data Provenance page provides that information. Because Logbot

ETL records and indexes data provenance details as objects flow through the system, users may

perform searches, conduct troubleshooting and evaluate things like dataflow compliance and

optimization in real time. By default, Logbot ETL updates this information every five minutes, but

that is configurable.

To access the Data Provenance page, select "Data Provenance" from the Global Menu. This opens a

dialog window that allows the user to see the most recent Data Provenance information available,

search the information for specific items, and filter the search results. It is also possible to open

additional dialog windows to see event details, replay data at any point within the dataflow, and see a

graphical representation of the data’s lineage, or path through the flow. (These features are described

in depth below.)

When authorization is enabled, accessessing Data Provenance information requires the 'query

provenance' Global Policy as well as the 'view provenance' Component Policy for the component

which generated the event. In addition, access to event details which include FlowFile attributes and

content require the 'view the data' Component Policy for the component which generated the event.

Logbot ETL User Guide – v2.0

© Logbot 2021 116

Provenance Events

Each point in a dataflow where a FlowFile is processed in some way is considered a 'provenance

event'. Various types of provenance events occur, depending on the dataflow design. For example,

when data is brought into the flow, a RECEIVE event occurs, and when data is sent out of the flow, a

SEND event occurs. Other types of processing events may occur, such as if the data is cloned

(CLONE event), routed (ROUTE event), modified (CONTENT_MODIFIED or

ATTRIBUTES_MODIFIED event), split (FORK event), combined with other data objects (JOIN

event), and ultimately removed from the flow (DROP event).

The provenance event types are:

Provenance Event Description

ADDINFO
Indicates a provenance event when additional information such as a

new linkage to a new URI or UUID is added

ATTRIBUTES_MODIFIED Indicates that a FlowFile’s attributes were modified in some way

CLONE Indicates that a FlowFile is an exact duplicate of its parent FlowFile

CONTENT_MODIFIED Indicates that a FlowFile’s content was modified in some way

CREATE
Indicates that a FlowFile was generated from data that was not received

from a remote system or external process

DOWNLOAD
Indicates that the contents of a FlowFile were downloaded by a user or

external entity

DROP
Indicates a provenance event for the conclusion of an object’s life for

some reason other than object expiration

EXPIRE
Indicates a provenance event for the conclusion of an object’s life due

to the object not being processed in a timely manner

FETCH
Indicates that the contents of a FlowFile were overwritten using the

contents of some external resource

FORK
Indicates that one or more FlowFiles were derived from a parent

FlowFile

JOIN
Indicates that a single FlowFile is derived from joining together

multiple parent FlowFiles

RECEIVE
Indicates a provenance event for receiving data from an external

process

REMOTE_INVOCATION
Indicates that a remote invocation was requested to an external

endpoint (e.g. deleting a remote resource)

REPLAY Indicates a provenance event for replaying a FlowFile

ROUTE

Indicates that a FlowFile was routed to a specified relationship and

provides information about why the FlowFile was routed to this

relationship

SEND Indicates a provenance event for sending data to an external process

UNKNOWN

Indicates that the type of provenance event is unknown because the

user who is attempting to access the event is not authorized to know the

type

Logbot ETL User Guide – v2.0

© Logbot 2021 117

Searching for Events

One of the most common tasks performed in the Data Provenance page is a search for a given

FlowFile to determine what happened to it. To do this, click the "Search" button in the upper-right

corner of the Data Provenance page. This opens a dialog window with parameters that the user can

define for the search. The parameters include the processing event of interest, distinguishing

characteristics about the FlowFile or the component that produced the event, the timeframe within

which to search, and the size of the FlowFile.

For example, to determine if a particular FlowFile was received, search for an Event Type of

"RECEIVE" and include an identifier for the FlowFile, such as its uuid or filename. The asterisk (*)

may be used as a wildcard for any number of characters. So, to determine whether a FlowFile with

"ABC" anywhere in its filename was received at any time on July 29, 2016, the search shown in the

following image could be performed:

Logbot ETL User Guide – v2.0

© Logbot 2021 118

If all filenames that do not have "ABC" anywhere in the filename is desired, then click the checkbox

with the label "Exclude from search results" beneath this entry before performing the search.

Logbot ETL User Guide – v2.0

© Logbot 2021 119

Details of an Event

In the far-left column of the Data Provenance page, there is a "View Details" icon for each event

(). Clicking this button opens a dialog window with three tabs: Details, Attributes, and Content.

The Details tab shows various details about the event, such as when it occurred, what type of event it

was, and the component that produced the event. The information that is displayed will vary

according to the event type. This tab also shows information about the FlowFile that was processed.

In addition to the FlowFile’s UUID, which is displayed on the left side of the Details tab, the UUIDs

of any parent or children FlowFiles that are related to that FlowFile are displayed on the right side of

the Details tab.

The Attributes tab shows the attributes that exist on the FlowFile as of that point in the flow. In order

to see only the attributes that were modified as a result of the processing event, the user may select the

checkbox next to "Only show modified" in the upper-right corner of the Attributes tab.

Logbot ETL User Guide – v2.0

© Logbot 2021 120

Logbot ETL User Guide – v2.0

© Logbot 2021 121

Replaying a FlowFile

A DFM may need to inspect a FlowFile’s content at some point in the dataflow to ensure that it is

being processed as expected. And if it is not being processed properly, the DFM may need to make

adjustments to the dataflow and replay the FlowFile again. The Content tab of the View Details dialog

window is where the DFM can do these things. The Content tab shows information about the

FlowFile’s content, such as its location in the Content Repository and its size. In addition, it is here

that the user may click the "Download" button to download a copy of the FlowFile’s content as it

existed at this point in the flow. The user may also click the "Submit" button to replay the FlowFile at

this point in the flow. Upon clicking "Submit", the FlowFile is sent to the connection feeding the

component that produced this processing event.

Logbot ETL User Guide – v2.0

© Logbot 2021 122

Viewing FlowFile Lineage

It is often useful to see a graphical representation of the lineage or path a FlowFile took within the

dataflow. To see a FlowFile’s lineage, click on the "Show Lineage" icon () in the far-right

column of the Data Provenance table. This opens a graph displaying the FlowFile () and the

various processing events that have occurred. The selected event will be highlighted in red. It is

possible to right-click or double-click on any event to see that event’s details (see Details of an

Event). To see how the lineage evolved over time, click the slider at the bottom-left of the window

and move it to the left to see the state of the lineage at earlier stages in the dataflow.

Find Parents

Sometimes, a user may need to track down the original FlowFile that another FlowFile was spawned

from. For example, when a FORK or CLONE event occurs, Logbot ETL keeps track of the parent

FlowFile that produced other FlowFiles, and it is possible to find that parent FlowFile in the Lineage.

Right-click on the event in the lineage graph and select "Find parents" from the context menu.

Logbot ETL User Guide – v2.0

© Logbot 2021 123

Once "Find parents" is selected, the graph is re-drawn to show the parent FlowFile and its lineage as

well as the child and its lineage.

Expanding an Event

In the same way that it is useful to find a parent FlowFile, the user may also want to determine what

children were spawned from a given FlowFile. To do this, right-click on the event in the lineage graph

and select "Expand" from the context menu.

Once "Expand" is selected, the graph is re-drawn to show the children and their lineage.

Logbot ETL User Guide – v2.0

© Logbot 2021 124

Logbot ETL User Guide – v2.0

© Logbot 2021 125

Experimental Warning

While all Apache licensed code is provided "on an "AS IS" BASIS, WITHOUT WARRANTIES OR

CONDITIONS OF ANY KIND, either express or implied" (see Apache License, Version 2.0), some

features of Logbot ETL may be marked experimental. Experimental features may:

 have undergone less extensive testing than is normal for standard Logbot ETL features

 interact with unstable external dependencies

 be subject to change (any exposed APIs should not be considered covered under the minor

release backward compatibility guidelines of Semantic Versioning)

 potentially cause data loss

 not be directly supported by the community in the event issues arise

Every attempt is made to provide more detailed and specific information around the nature of the

experimental warning on a per-feature basis. Questions around specific experimental features should

be directed to the Logbot ETL Developer Mailing List.

Logbot ETL User Guide – v2.0

© Logbot 2021 126

Other Management Features

In addition to the Summary Page, Data Provenance Page, Template Management Page, and Bulletin

Board Page, there are other tools in the Global Menu (see Logbot ETL User Interface) that are useful

to the DFM. Select Flow Configuration History to view all the changes that have been made to the

dataflow. The history can aid in troubleshooting, such as if a recent change to the dataflow has caused

a problem and needs to be fixed. The DFM can see what changes have been made and adjust the flow

as needed to fix the problem. While Logbot ETL does not have an "undo" feature, the DFM can make

new changes to the dataflow that will fix the problem.

Select Node Status History to view instance specific metrics from the last 24 hours or if the instance

runs for less time, then since it has been started. The status history can help the DFM in

troubleshooting performance issues and provides a general view on the health of the node. The status

history includes information about the memory usage and disk usage among other things.

Two other tools in the Global Menu are Controller Settings and Users. The Controller Settings page

provides the ability to change the name of the Logbot ETL instance, add comments describing the

Logbot ETL instance, and set the maximum number of threads that are available to the application. It

also provides tabs where DFMs may add and configure Controller Services and Reporting Tasks. The

Users page is used to manage user access, which is described in the System Administrator’s Guide.

Logbot ETL User Guide – v2.0

© Logbot 2021 127

Build your first Dataflow

You can use Lobot ETL to create data flows for any protocols or data sources. Start your flow

with a listener component, which gets the data from a source system. On the other end of the

flow, add a transmitter component that writes the data to a target system. Additionally, you

can add other components in between that process the data.

Logbot ETL User Guide – v2.0

© Logbot 2021 128

Logbot ETL components

Logbot ETL components are the building blocks of data flows. The Logbot ETL Component

toolbar contains several data flow components that you can use when creating a new flow.

Logbot ETL User Guide – v2.0

© Logbot 2021 129

Create a data flow

This section walks you through the process of creating Logbot ETL data flows from scratch

using basic flow options.

For information about building advanced data flows (using parameters, custom properties,

controller services, or reporting tasks), see the Logbot ETL User Guide.

1. Add data flow components.

You can add processors and other components to build your data flow as you need. To

add a processor to your flow, drag the processor icons to the canvas from the

component toolbar in the top-left of the screen. For more information, see Adding

Components to the Canvas in the Logbot ETL User Guide.

2. Configure the processors.

a. Right-click the processor on the canvas and choose Configure in the context

menu. Alternatively, double-click on the processor.

A configuration dialog with the following tabs is displayed: Settings,

Scheduling, Properties, and Comments.

b. Configure the processor according to the behavior you desire in your data

flow.

c. When you have finished configuring the options you need, click Apply to save

the changes or cancel all changes by clicking Cancel.

Logbot ETL User Guide – v2.0

© Logbot 2021 130

3. Connect data flow components.

You can connect the data flow components by hovering over a component and

dragging the connection icon to another component. You can then choose which

relationships you want to include for this connection.

4. Start your data flow.

When all components are connected, the flow is still not working. To start the

processors, click each one individually and then right-click and choose the Start menu

item.

Logbot ETL User Guide – v2.0

© Logbot 2021 131

Alternatively, you can select all processors and then click the Start icon on

the Operate palette.

After you start the data flow, the icon in the top-left corner of the processors changes

from a stopped icon to a running icon. You can stop the processors by using

the Stop icon on the Operate palette or the Stop context menu item.

By following the above steps, you can choose any processor and other Logbot ETL

components to create a flow suitable for your purpose.

Logbot ETL User Guide – v2.0

© Logbot 2021 132

Learn about Logbot ETL processors

Reviewing the list of available Logbot ETL processors can help you better understand the

capabilities of the out-of-the-box processors.

See what processors are available

To create an effective data flow, you must understand what types of processors are available

and what they are suited for. Logbot ETL contains many processors that are available out of

the box. These provide capabilities to ingest data from different systems, route, transform,

process, split, and aggregate data and also distribute data to many systems. The number of

processors increases in almost every Logbot ETL release.

For the complete list of Logbot ETL processors available in this release, see the list

of Supported Logbot ETL Processors.

Get more information for a processor

Each processor has multiple properties and relationships, and it can be challenging to

remember how all of the different pieces work for the processor. You can review a

processor’s usage information by right-clicking the processor and choosing the View

usage menu item.

Logbot ETL User Guide – v2.0

© Logbot 2021 133

Work with attributes

Each FlowFile is created with several attributes, and these attributes change over the life of

the FlowFile. The concept of a FlowFile provides three primary benefits:

 It enables you to make routing decisions in the flow so that FlowFiles that meet

certain criteria can be handled differently than other FlowFiles. This is done using the

RouteOnAttribute and similar processors.

 Attributes are used to configure processors in such a way that the configuration of the

processor is dependent on the data itself. For instance, the PutFile processor uses the

attributes to know where to store each FlowFile, while the directory and filename

attributes may be different for each FlowFile.

 Attributes provide valuable context about the data. This is useful when reviewing the

provenance data for a FlowFile. You can search for provenance data that match

specific criteria, and it also enables you to view this context when inspecting the

details of a Provenance Event. By doing this, you gain valuable insight as to why the

data was processed one way or another, by glancing at this context that is carried

along with the content.

Each FlowFile has a minimum set of attributes called Common Attributes:

filename
A filename that can be used to store the data to a local or remote file system.

path

The name of a directory that can be used to store the data to a local or remote file

system.

uuid
A Universally Unique Identifier that distinguishes the FlowFile from other FlowFiles

in the system.

entryDate

The date and time at which the FlowFile entered the system (that is, was created). The

value of this attribute is a number that represents the number of milliseconds since

midnight, Jan. 1, 1970 (UTC).

lineageStartDate
Any time that a FlowFile is cloned, merged, or split, this results in a 'child' FlowFile

being created. As those children are then cloned, merged, or split, a chain of ancestors

is built. This value represents the date and time at which the oldest ancestor entered

the system. Another way to think about this is that this attribute represents the latency

of the FlowFile through the system. The value is a number that represents the number

of milliseconds since midnight, Jan. 1, 1970 (UTC).

fileSize
This attribute represents the number of bytes taken up by the FlowFile’s content.

Note

The uuid, entryDate, lineageStartDate, and fileSize attributes are system-generated

and cannot be changed.

Logbot ETL User Guide – v2.0

© Logbot 2021 134

To extract attributes, add user-defined attributes, route FlowFiles based on their attributes, or

perform other complex tasks with the help of attributes, see Working With Attributes in

the Logbot ETL Getting Started Guide for details.

Logbot ETL User Guide – v2.0

© Logbot 2021 135

Work with data flow templates

Templates make it easier to reuse and distribute Logbot ETL flows or specific parts of data

flows.

Besides reducing development time, reuse also supports the adoption of standards and

patterns in data flow design. Data flow templates can help you to build a library of reusable

elements that you can use as pre-built components in your new flows. Templates can be made

from any subset of a flow: a single processor, a flattened subflow, or a process group holding

a subflow. Alternatively, templates can be made from full flows as well. For more in-depth

information about using templates, see the Logbot ETL User Guide.

Create a template

Learn how to create data flow templates that you can use as building blocks in another data

flow.

Follow these steps to create a template from a reusable subflow:

1. Select the components/flow elements you want to include in the template.

2. Click the Create Template icon on the Operate palette.

3. Provide a name and optionally a description for the template.

4. Click Create.

Download a template

You can export templates from Logbot ETL and use them as a starting point for developing

other data flows. You can retain or change all configurations of the downloaded template.

Templates can be exported from Logbot ETL and used as a starting point for developing a

data flow. All configurations of the downloaded template are retained by default and can also

be changed.

To download a template from Logbot ETL:

1. Go to the Templates option in the Global Menu at the top-right hand corner of the

Logbot ETL UI.

2. Click the download icon of the template you want to download.

The template XML file is downloaded.

Upload a template

You can import a data flow template to Logbot ETL and use it as a starting point for

developing a data flow. When using the template, you can retain or change all of its

configurations.

Templates can be imported to Logbot ETL and used as a starting point for developing a data

flow. All configurations of the downloaded template are retained and can also be changed.

To upload a template into Logbot ETL:

Logbot ETL User Guide – v2.0

© Logbot 2021 136

1. Click the Upload Template icon from the Operate palette.

2. Click the Search icon in the Upload template window and navigate to the XML file

you want to upload.

3. Select the file.

4. Click Upload.

The template is uploaded and displayed in the templates table in the Logbot ETL UI. You can

now use it to create data flows.

Use a template

Learn how you can build data flows with the help of templates in Cloudera Flow

Management (CFM).

When you have created or imported templates, you can use these as building blocks in

various data flows, just as you use a any data flow component.

To use a template in a data flow:

1. Click and drag the Template icon from the Component toolbar to the canvas.

The Add template window containing a list of all available templates is displayed.

2. Choose the template that you would like to add to the canvas and click Add.

There are a certain important points to remember when working with templates:

o Sensitive properties (for example, a password configured in a processor) is not

added to the template. These sensitive properties have to be populated each

time that the template is used.

o If a component that is included in the template references a controller service,

the controller service is also added to the template. This means that each time

that the template is used in a data flow, it creates a copy of the controller

service.

Manage templates

You can access and work with your templates using the Logbot ETL Templates dialog.

To open the dialog that displays all available templates with the ability to filter, export, and

delete them:

1. Select Templates from the Global Menu.

Logbot ETL User Guide – v2.0

© Logbot 2021 137

The Logbot ETL Templates window is displayed.

2. Check the list of available templates. You can filter the list by name or by description

to find the template of your interest.

3. On the right side of the table you can find the Download icon that you can use to

download a template as an XML file.

Logbot ETL User Guide – v2.0

© Logbot 2021 138

Examples

In this chapter different types of processors will be described along with usage examples.

Logbot ETL User Guide – v2.0

© Logbot 2021 139

ExecuteScript Processor

This section describes various "recipes" on how to accomplish certain tasks with the Logbot

ETL processor ExecuteScript, with examples given in Javascript. Recipes in this article series

include:

Part 1 - Introduction to the Logbot ETL API and FlowFiles

 Getting a flow file from an incoming queue

 Creating new flow files

 Working with flow file attributes

 Transferring a flow file

 Logging

Part 2 - FlowFile I/O and Error Handling

 Reading from a flow file

 Writing to a flow file

 Reading and writing to/from a flow file

 Error Handling

Part 3 - Advanced Features

 Using Dynamic Properties

 Adding Modules

 State Management

 Accessing Controller Services

Introduction

ExecuteScript is a versatile processor that allows the user to code custom logic in a

programming language that will be executed each time the ExecuteScript processor is

triggered. The following variable bindings are provided to the script to enable access to

Logbot ETL components:

session: This is a reference to the ProcessSession assigned to the processor. The session

allows you to perform operations on flow files such as create(), putAttribute(), and transfer(),

as well as read() and write().

context: This is a reference to the ProcessContext for the processor. It can be used to retrieve

processor properties, relationships, Controller Services, and the StateManager.

log: This is a reference to the ComponentLog for the processor. Use it to log messages to

Logbot ETL, such as log.info('Hello world!')

REL_SUCCESS: This is a reference to the "success" relationship defined for the processor. It

could also be inherited by referencing the static member of the parent class (ExecuteScript),

but some engines such as Lua do not allow for referencing static members, so this is a

convenience variable. It also saves having to use the fully-qualified name for the relationship.

REL_FAILURE: This is a reference to the "failure" relationship defined for the processor. As

with REL_SUCCESS, it could also be inherited by referencing the static member of the

parent class (ExecuteScript), but some engines such as Lua do not allow for referencing static

https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi.processors.script.ExecuteScript/index.html
https://community.hortonworks.com/articles/75545/executescript-cookbook-part-2.html
https://community.hortonworks.com/articles/77739/executescript-cookbook-part-3.html

Logbot ETL User Guide – v2.0

© Logbot 2021 140

members, so this is a convenience variable. It also saves having to use the fully-qualified

name for the relationship.

Dynamic Properties: Any dynamic properties defined in ExecuteScript are passed to the

script engine as variables set to the PropertyValue object corresponding to the dynamic

property. This allows you to get the String value of the property, but also to evaluate the

property with respect to Logbot ETL Expression Language, cast the value as an appropriate

data type (such as Boolean, e.g.), etc. Because the dynamic property name becomes the

variable name for the script, you must be aware of the variable naming properties for the

chosen script engine. For example, Groovy does not allow periods (.) in variable names, so an

error will occur if "my.property" was a dynamic property name.

Interaction with these variables is done via the Logbot ETL Java API, each recipe below will

discuss the relevant API calls as they are introduced. The recipes in the following section

perform various functions on flow files, such as reading/writing attributes, transferring to a

relationship, logging, etc. Please note that the examples are snippets and do not run as-is. For

example, if a flow file has been retrieved from the queue with session.get(), it must be

transferred to a relationship or removed, or else an error will occur. The snippets are meant to

be plain and clear to illustrate only the concept(s) presented, without the addition of

boilerplate code to make them working examples. In a later article I will put them all together

to show full working scripts that perform useful tasks.

Recipes

Recipe: Get an incoming flow file from the session

Use Case: You have incoming connection(s) to ExecuteScript and want to retrieve one flow

file from the queue(s) for processing.

Approach: Use the get() method from the session object. This method returns the FlowFile

that is next highest priority FlowFile to process. If there is no FlowFile to process, the method

will return null. Note that it is possible to have null returned even if there is a steady flow of

FlowFiles into the processor. This can happen if there are multiple concurrent tasks for the

processor, and the other task(s) have already retrieved the FlowFiles. If the script requires a

FlowFile to continue processing, then it should immediately return if null is returned from

session.get()

Examples:

Javascript

var flowFile = session.get();

if (flowFile != null) {

 // All processing code goes here

}

Recipe: Get multiple incoming flow files from the session

Use Case: You have incoming connection(s) to ExecuteScript and want to retrieve multiple

flow files from the queue(s) for processing.

Approach: Use the get(maxResults) method from the session object. This method returns up

to maxResults FlowFiles from the work queue. If no FlowFiles are available, an empty list is

Logbot ETL User Guide – v2.0

© Logbot 2021 141

returned (the method does not return null). NOTE: If multiple incoming queues are present,

the behavior is unspecified in terms of whether all queues or only a single queue will be

polled in a single call.

Examples:

Javascript

flowFileList = session.get(100)

if(!flowFileList.isEmpty()) {

 for each (var flowFile in flowFileList) {

 // Process each FlowFile here

 }

}

Recipe: Create a new FlowFile

Use Case: You want to generate a new FlowFile to send to the next processor

Approach: Use the create() method from the session object. This method returns a new

FlowFile object, which you can perform further processing on

Examples:

Javascript

var flowFile = session.create();

// Additional processing here

Recipe: Create a new FlowFile from a parent FlowFile

Use Case: You want to generate new FlowFile(s) based on an incoming FlowFile

Approach: Use the create(parentFlowFile) method from the session object. This method

takes a parent FlowFile reference and returns a new child FlowFile object. The newly created

FlowFile will inherit all of the parent's attributes except for the UUID. This method will

automatically generate a Provenance FORK event or a Provenance JOIN event, depending on

whether or not other FlowFiles are generated from the same parent before the ProcessSession

is committed.

Examples:

Javascript

var flowFile = session.get();

if (flowFile != null) {

Logbot ETL User Guide – v2.0

© Logbot 2021 142

 var newFlowFile = session.create(flowFile);

 // Additional processing here

}

Recipe: Add an attribute to a flow file

Use Case: You have a flow file to which you'd like to add a custom attribute.

Approach: Use the putAttribute(flowFile, attributeKey, attributeValue) method from the

session object. This method updates the given FlowFile's attributes with the given key/value

pair. NOTE: The "uuid" attribute is fixed for a FlowFile and cannot be modified; if the key is

named "uuid", it will be ignored.

Also this is a good point to mention that FlowFile objects are immutable; this means that if

you update a FlowFile's attributes (or otherwise alter it) via the API, you will get a new

reference to the new version of the FlowFile. This is very important when it comes to

transferring FlowFiles to relationships. You must keep a reference to the latest version of a

FlowFile, and you must transfer or remove the latest version of all FlowFiles retrieved from

or created by the session, otherwise you will get an error when executing. Most often, the

variable used to store a FlowFile reference will be overwritten with the latest version returned

from a method that alters the FlowFile (intermediate FlowFile references will be

automatically discarded). In these examples you will see this technique of reusing a flowFile

reference when adding attributes. Note that the current reference to the FlowFile is passed

into the putAttribute() method. The resulting FlowFile has an attribute named 'myAttr' with a

value of 'myValue'. Also note that the method takes a String for the value; if you have an

Object you will have to serialize it to a String. Finally, please note that if you are adding

multiple attributes, it is better to create a Map and use putAllAttributes() instead (see next

recipe for details).

Examples:

Javascript

var flowFile = session.get();

if (flowFile != null) {

 flowFile = session.putAttribute(flowFile, 'myAttr', 'myValue')

}

Recipe: Add multiple attributes to a flow file

Use Case: You have a flow file to which you'd like to add custom attributes.

Approach: Use the putAllAttributes(flowFile, attributeMap) method from the session object.

This method updates the given FlowFile's attributes with the key/value pairs from the given

Map. NOTE: The "uuid" attribute is fixed for a FlowFile and cannot be modified; if the key is

named "uuid", it will be ignored.

The technique here is to create a Map (aka dictionary in Jython, hash in JRuby) of the

attribute key/value pairs you'd like to update, then call putAllAttributes() on it. This is much

Logbot ETL User Guide – v2.0

© Logbot 2021 143

more efficient than calling putAttribute() for each key/value pair, as the latter case will cause

the framework to create a temporary version of the FlowFile for each attribute added (see

above recipe for discussion on FlowFile immutability). The examples show a map of two

entries myAttr1 and myAttr2, set to '1' and the language-specific coercion of the number 2 as

a String (to adhere to the method signature of requiring String values for both key and value).

Note that a session.transfer() is not specified here (so the code snippets below do not work as-

is), see the following recipe for that.

Examples:

Javascript

var number2 = 2;

var attrMap = {'myAttr1':'1', 'myAttr2': number2.toString()}

var flowFile = session.get()

if (flowFile != null) {

 flowFile = session.putAllAttributes(flowFile, attrMap)

}

Recipe: Get an attribute from a flow file

Use Case: You have a flow file from which you'd like to inspect an attribute.

Approach: Use the getAttribute(attributeKey) method from the FlowFile object. This method

returns the String value for the given attributeKey, or null if the attributeKey is not found.

The examples show the retrieval of the value for the "filename" attribute.

Examples:

Javascript

var flowFile = session.get()

if (flowFile != null) {

 var myAttr = flowFile.getAttribute('filename')

}

Recipe: Get all attributes from a flow file

Use Case: You have a flow file from which you'd like to retrieve its attributes.

Approach: Use the getAttributes() method from the FlowFile object. This method returns a

Map with String keys and String values, representing the key/value pairs of attributes for the

flow file. The examples show an iteration over the Map of all attributes for a FlowFile.

Examples:

Javascript

Logbot ETL User Guide – v2.0

© Logbot 2021 144

var flowFile = session.get()

if (flowFile != null) {

 var attrs = flowFile.getAttributes();

 for each (var attrKey in attrs.keySet()) {

 // Do something with attrKey (the key) and/or attrs[attrKey]
(the value)

 }

}

Recipe: Transfer a flow file to a relationship

Use Case: After processing a flow file (new or incoming), you want to transfer the flow file

to a relationship ("success" or "failure"). In this simple case let us assume there is a variable

called "errorOccurred" that indicates which relationship to which the FlowFile should be

transferred. Additional error handling techniques will be discussed in part 2 of this series.

Approach: Use the transfer(flowFile, relationship) method from the session object. From the

documentation: this method transfers the given FlowFile to the appropriate destination

processor work queue(s) based on the given relationship. If the relationship leads to more

than one destination the state of the FlowFile is replicated such that each destination receives

an exact copy of the FlowFile though each will have its own unique identity.

NOTE: ExecuteScript will perform a session.commit() at the end of each execution to ensure

the operations have been committed. You do not need to (and should not) perform a

session.commit() within the script.

Examples:

Javascript

var flowFile = session.get();

if (flowFile != null) {

 // All processing code goes here

 if(errorOccurred) {

 session.transfer(flowFile, REL_FAILURE)

 }

 else {

Logbot ETL User Guide – v2.0

© Logbot 2021 145

 session.transfer(flowFile, REL_SUCCESS)

 }

}

Recipe: Send a message to the log at a specified logging level

Use Case: You want to report some event that has occurred during processing to the logging

framework.

Approach: Use the log variable with the warn(), trace(), debug(), info(), or error() methods.

These methods can take a single String, or a String followed by an array of Objects, or a

String followed by an array of Objects followed by a Throwable. The first one is used for

simple messages. The second is used when you have some dynamic objects/values that you

want to log. To refer to these in the message string use "{}" in the message. These are

evaluated against the Object array in order of appearance, so if the message reads "Found

these things: {} {} {}" and the Object array is ['Hello',1,true], then the logged message will

be "Found these things: Hello 1 true". The third form of these logging methods also takes a

Throwable parameter, and is useful when an exception is caught and you want to log it.

Examples:

Javascript

var ObjectArrayType = Java.type("java.lang.Object[]");

var objArray = new ObjectArrayType(3);

objArray[0] = 'Hello';

objArray[1] = 1;

objArray[2] = true;

log.info('Found these things: {} {} {}', objArray)

Logbot ETL User Guide – v2.0

© Logbot 2021 146

Introduction to FlowFile I/O

Flow files in Logbot ETL are made of two major components, attributes and content.

Attributes are metadata about the content / flow file, and we saw how to manipulate

them using ExecuteScript in Part 1 of this series. The content of a flow file is, at its

heart, simply a collection of bytes and has no inherent structure, schema, format, etc.

Various Logbot ETL processors assume the incoming flow files have a particular

schema/format (or determine it from attributes such as "mime.type" or infer it in other

ways). These processors can then act upon the content based on the assumption that

the files really do have that format (and will often transfer to a "failure" relationship if

they do not). Also processors may output flow files in a specified format.

Input and Output (I/O) for the contents of flow files is provided via the

ProcessSession API and thus the "session" variable for ExecuteScript (see Part 1 for

more information). One mechanism for this is to pass a callback object into a call to

session.read() or session.write(). An InputStream and/or OutputStream will be created

for the FlowFile object, and the callback object will be invoked using the

corresponding callback interface, with the InputStream and/or OutputStream

references passed in for use by the callback. There are three main callback interfaces,

each with its own use case:

InputStreamCallback

This interface is used by the session.read(flowFile, inputStreamCallback) method to

provide an InputStream from which to read the contents of the flow file. The interface

has a single method:

void process(InputStream in) throws IOException

This interface provides a managed input stream for use. The input stream is

automatically opened and closed though it is ok to close the stream manually. This is

the form you would use if you are only reading from a particular flow file, and not

writing back out to it.

An example is when you want to process an incoming flow file, but create many

output flow files, such as the SplitText processor does.

OutputStreamCallback

This interface is used by the session.write(flowFile, outputStreamCallback) method

to provide an OutputStream to which to write the contents of the flow file. The

interface has a single method:

void process(OutputStream out) throws IOException

This interface provides a managed output stream for use. The output stream is

automatically opened and closed though it is ok to close the stream manually - and

quite important if any streams wrapping these streams open resources which should

be cleared.

An example is when ExecuteScript will be generating data, either from within or from

an external file, but not a flow file. Then you would use session.create() to create a

new FlowFile, then session.write(flowFile, outputStreamCallback) to insert content.

StreamCallback

https://community.hortonworks.com/articles/75032/executescript-cookbook-part-1.html
https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi.processors.standard.SplitText/index.html

Logbot ETL User Guide – v2.0

© Logbot 2021 147

This interface is used by the session.write(flowFile, streamCallback) method to

provide an InputStream and OutputStream, from which to read from and/or write to

the contents of the flow file. The interface has a single method:

void process(InputStream in, OutputStream out) throws
IOException

This interface provides managed input and output streams for use. The input stream is

automatically opened and closed though it is ok to close the streams manually - and

quite important if any streams wrapping these streams open resources which should

be cleared.

An example is when you want to process an incoming flow file and overwrite its

contents with something new, such as the EncryptContent processor does.

Since these callbacks are Java objects, the script will have to create one and pass it

into the session method(s), the recipes will illustrate this for the various scripting

languages. Also there are other methods of reading from and writing to flow files,

which include:

o Using session.read(flowFile) to return an InputStream. This alleviates the need

for an InputStreamCallback, instead it returns an InputStream that you can

read from. In exchange you must manage (close, e.g.) the InputStream

manually.

o Using session.importFrom(inputStream, flowFile) to write from an

InputStream to a FlowFile. This replaces the need for a session.write() with an

OutputStreamCallback passed in.

 Now, on to the recipes :)

Recipes

Recipe: Read the contents of an incoming flow file using a callback

Use Case: You have incoming connection(s) to ExecuteScript and want to retrieve the

contents of a flow file from the queue(s) for processing.

Approach: Use the read(flowFile, inputStreamCallback) method from the session

object. An InputStreamCallback object is needed to pass into the read() method. Note

that because InputStreamCallback is an object, the contents are only visible to that

object by default. If you need to use the data outside the read() method, use a more

globally-scoped variable. The examples will store the full contents of the incoming

flow file into a String (using Apache Commons' IOUtils class). NOTE: For large flow

files, this is not the best technique; rather you should read in only as much data as you

need, and process that as appropriate. For something like SplitText, you could read in

a line at a time and process it within the InputStreamCallback, or use the

session.read(flowFile) approach mentioned earlier to get an InputStream reference to

use outside of a callback.

Examples:

Javascript

https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi.processors.standard.EncryptContent/index.html

Logbot ETL User Guide – v2.0

© Logbot 2021 148

var InputStreamCallback =
Java.type("org.apache.nifi.processor.io.InputStreamCallback")

var IOUtils = Java.type("org.apache.commons.io.IOUtils")

var StandardCharsets =
Java.type("java.nio.charset.StandardCharsets")

var flowFile = session.get();

if(flowFile != null) {

 // Create a new InputStreamCallback, passing in a function
to define the interface method

 session.read(flowFile,

 new InputStreamCallback(function(inputStream) {

 var text = IOUtils.toString(inputStream,
StandardCharsets.UTF_8);

 // Do something with text here

 }));

}

Recipe: Write content to an outgoing flow file using a callback

Use Case: You want to generate content for an outgoing flow file.

Approach: Use the write(flowFile, outputStreamCallback) method from the session

object. An OutputStreamCallback object is needed to pass into the write() method.

Note that because OutputStreamCallback is an object, the contents are only visible to

that object by default. If you need to use the data outside the write() method, use a

more globally-scoped variable. The examples will write a sample String to a flowFile.

Examples:

Javascript

var OutputStreamCallback =
Java.type("org.apache.nifi.processor.io.OutputStreamCallback")
;

Logbot ETL User Guide – v2.0

© Logbot 2021 149

var IOUtils = Java.type("org.apache.commons.io.IOUtils");

var StandardCharsets =
Java.type("java.nio.charset.StandardCharsets");

var flowFile = session.get();

if(flowFile != null) {

 // Create a new OutputStreamCallback, passing in a function
to define the interface method

 flowFile = session.write(flowFile,

 new OutputStreamCallback(function(outputStream) {

 outputStream.write("Hello
World!".getBytes(StandardCharsets.UTF_8))

 }));

}

Recipe: Overwrite an incoming flow file with updated content using a callback

Use Case: You want to reuse the incoming flow file but want to modify its content for

the outgoing flow file.

Approach: Use the write(flowFile, streamCallback) method from the session object.

An StreamCallback object is needed to pass into the write() method. StreamCallback

provides both an InputStream (from the incoming flow file) and an outputStream (for

the next version of that flow file), so you can use the InputStream to get the current

contents of the flow file, then modify them and write them back out to the flow file.

This overwrites the contents of the flow file, so for append you'd have to handle that

by appending to the read-in contents, or use a different approach (with

session.append() rather than session.write()). Note that because StreamCallback is an

object, the contents are only visible to that object by default. If you need to use the

data outside the write() method, use a more globally-scoped variable. The examples

will reverse the contents of the incoming flowFile (assumed to be a String) and write

out the reversed string to a new version of the flowFile.

Examples:

Javascript

Logbot ETL User Guide – v2.0

© Logbot 2021 150

var StreamCallback =
Java.type("org.apache.nifi.processor.io.StreamCallback");

var IOUtils = Java.type("org.apache.commons.io.IOUtils");

var StandardCharsets =
Java.type("java.nio.charset.StandardCharsets");

var flowFile = session.get();

if(flowFile != null) {

 // Create a new StreamCallback, passing in a function to
define the interface method

 flowFile = session.write(flowFile,

 new StreamCallback(function(inputStream, outputStream) {

 var text = IOUtils.toString(inputStream,
StandardCharsets.UTF_8)

outputStream.write(text.split("").reverse().join("").getBytes(
StandardCharsets.UTF_8))

 }));

}

Recipe: Handle errors during script processing

Use Case: An error occurs in the script (either by data validation or a thrown

exception), and you want the script to handle it gracefully.

Approach: For exceptions, use the exception-handling mechanism for the scripting

language (often they are try/catch block(s)). For data validation, you can use a similar

approach, but define a boolean variable like "valid" and an if/else clause rather than a

try/catch clause. ExecuteScript defines "success" and "failure" relationships; often

your processing will transfer "good" flow files to success and "bad" flow files to

failure (logging an error in the latter case). It is possible

Logbot ETL User Guide – v2.0

© Logbot 2021 151

Examples:

Javascript

var flowFile = session.get();

if(flowFile != null) {

 try {

 // Something that might throw an exception here

 // Last operation is transfer to success (failures handled
in the catch block)

 session.transfer(flowFile, REL_SUCCESS)

} catch(e) {

 log.error('Something went wrong', e)

 session.transfer(flowFile, REL_FAILURE)

}

}

Logbot ETL User Guide – v2.0

© Logbot 2021 152

Advanced Features

Dynamic Properties

One such capability is the concept of dynamic properties, also called User-Defined

properties. These are properties for a processor for which a user can set both the property

name and value. Not all processors support/use dynamic properties, but ExecuteScript will

pass dynamic properties as variables which reference a PropertyValue object corresponding

to the property's value. There are two important things to note here:

1. Because the property name is bound as-is to a variable name, the naming convention

for dynamic properties must be supported for the specified programming language.

For example, Groovy does not support period (.) as a valid variable character, so a

dynamic property such as "my.value" will cause the processor to fail. A valid

alternative in this case is "myValue".

2. The PropertyValue object is used (rather than a String representation of the value) to

allow the script to perform various operations on the property's value before

evaluating it to a String. If the property is known to contain a literal value, you can

call the getValue() method on the variable to get its String representation. If instead

the value could contain Expression Language or you want to cast the value to

something other than String (such as the value 'true' to a Boolean object), there are

methods for these operations too. These examples are illustrated in the recipes below,

assuming we have two properties 'myProperty1' and 'myProperty2' defined as such:

Recipe: Get the value of a dynamic property

Use Case: A user has entered a dynamic property for use in the script (configuration

parameter, e.g.).

Approach: Use the getValue() method from the variable's PropertyValue object. This method

returns a String representation of the value of the dynamic property. Note that if Expression

Language is present in the value, getValue() will not evaluate it (see the following recipe for

that functionality).

Examples:

Logbot ETL User Guide – v2.0

© Logbot 2021 153

Javascript

var myValue1 = myProperty1.getValue()

Recipe: Get the value of a dynamic property after evaluating Expression Language constructs

Use Case: A user has entered a dynamic property for use in the script (configuration

parameter, e.g.), and it refers to attribute(s) in an incoming flow file.

Approach: Use the evaluateAttributeExpressions(flowFile) method from the variable's

PropertyValue object. This method, followed by getValue(), returns a String representation of

the value of the dynamic property after any Expression Language constructs have been

evaluated. If a flow file is not available, but variables have been defined in the environment

or Variable Registry, you can use evaluateAttributeExpressions() without a parameter

Examples:

Javascript

var myValue1 = myProperty1.getValue()var myValue2 =
myProperty2.evaluateAttributeExpressions(flowFile).getValue()

State Management

Logbot ETL offers the capability for Processors and other Logbot ETL components to persist

some information to enable some stateful functionality around the component. For example,

the QueryDatabaseTable processor keeps track of the largest values it has seen for the

specified columns, such that the next time it runs, it will only fetch rows whose values are

larger than those that have been seen so far (i.e. stored in the State Manager).

An important concept in terms of state management is Scope. Logbot ETL components can

choose to store their state at the cluster level or the local level. Note that in a standalone

Logbot ETL instance, "cluster scope" is identical to "local scope". The choice of scope is

usually about whether in a flow, the same processor on each node can share the state data. If

the instances across the cluster do not need to share state, then use local scope. In Java these

options are provided as an enum called Scope, so when I refer to Scope.CLUSTER and

Scope.LOCAL, I mean cluster and local scope respectively.

To employ state management features in ExecuteScript (language-specific examples are

below), you get a reference to the StateManager by calling ProcessContext's

getStateManager() method (recall that each engine gets a variable named "context" with an

instance of ProcessContext). You can then call the following methods on the StateManager

object:

void setState(Map<String, String> state, Scope scope) - Updates the value of the component's

state at the given scope, setting it to given value. Notice that the value is a Map; the concept

of "component state" is the Map of all key/value pairs that each constitute a lower-level of

state. The Map is updated all at once to provide atomicity.

StateMap getState(Scope scope) - Returns the current state for the component at the given

scope. This method never returns null; rather it is a StateMap object and if the state has not

yet been set, the StateMap's version will be -1, and the map of values will be empty. Often a

new Map<String,String> will be created to store the updated values, then setState() or

replace() will be called.

https://nifi.apache.org/docs/nifi-docs/components/org.apache.nifi.processors.standard.QueryDatabaseTable/index.html

Logbot ETL User Guide – v2.0

© Logbot 2021 154

boolean replace(StateMap oldValue, Map<String, String> newValue, Scope scope) - Updates

the value of the component's state (at the given scope) to the new value if and only if the

value currently is the same as the given oldValue. If the state was updated to the new value,

true is returned; otherwise false is returned if the state's value was not equal to oldValue.

void clear(Scope scope) - Clears all keys and values from the component's state at the given

scope.

Recipe: Get the current map of key/value pairs

Use Case: The script needs to get the current key/value pairs from the state manager for use

in the script (update, e.g.).

Approach: Use the getStateManager() method from ProcessContext, then getStateMap() from

the StateManager, then toMap() to convert to a Map<String,String> of key/value pairs. Note

that StateMap also has a get(key) method for simply retrieving a value, but this is not often

used as the Map is usually updated and must be set for the StateManager once this is done.

Examples:

Javascript

var Scope = Java.type('org.apache.nifi.components.state.Scope');

var oldMap = context.stateManager.getState(Scope.LOCAL).toMap();

NOTE: Only the Scope class was referenced explicitly in the script, so it is the only one

imported. If you refer to StateManager, StateMap, etc. you will need to import those classes

as well.

Recipe: Update the map of key/value pairs

Use Case: The script wants to update the state map with a new Map of key/value pairs.

Approach: To get the current StateMap object, again use the getStateManager() method from

ProcessContext, then getStateMap() from the StateManager. The examples assume a new

Map, but using the above recipe (with the toMap() method), you could create a new Map

using the existing values, then just update the desired entries. Note that replace() will not

work if there is no current map (i.e. the StateMap.getVersion() returns -1), so the examples

check and call setState() or replace() accordingly. When running from a new instance of

ExecuteScript, the StateMap version will be -1, so after a single execution, if you right-click

on the ExecuteScript processor and choose View State, you should see something like this:

Logbot ETL User Guide – v2.0

© Logbot 2021 155

Examples:

Javascript

var Scope = Java.type('org.apache.nifi.components.state.Scope');

var stateManager = context.stateManager;

var stateMap = stateManager.getState(Scope.CLUSTER);

var newMap = {'myKey1': 'myValue1'};

if (stateMap.version == -1) {

 stateManager.setState(newMap, Scope.CLUSTER);

} else {

 stateManager.replace(stateMap, newMap, Scope.CLUSTER);

}

Recipe: Clear the state map

Use Case: The script wants to clear all the key/value pairs for the state map.

Approach: Use the getStateManager() method from ProcessContext, then call StateManager's

clear(scope) method.

Examples:

Javascript

Logbot ETL User Guide – v2.0

© Logbot 2021 156

var Scope = Java.type('org.apache.nifi.components.state.Scope');

context.stateManager.clear(Scope.LOCAL);

Accessing Controller Services

In the Java Archive (NAR) structure, Controller Services are exposed as interfaces, usually in

an API JAR. For example, the DistributedCacheClient is an interface extending from

ControllerService, and it resides in the nifi-distributed-cache-client-service-api JAR, which is

located in the nifi-standard-services-api-nar NAR. Other NARs that wish to reference

interfaces (to create a new type of client implementation, e.g.) must specify the nifi-standard-

services-api-nar as its parent NAR, and it then refers to provided instances of the API JARs

in the processor submodule.

That's a little more low-level detail than you need to be able to leverage Controller Services,

but I mention it for two reasons:

the scripting processors do have access to some of the Controller Service interfaces (and

associated classes) in the nifi-standard-services-api-nar. These include DBCPService,

DistributedMapCacheClient, DistributedSetCacheClient, HttpContextMap and

SSLContextService. However I don't believe the other APIs included in the nifi-standard-

services-api-nar will be available, and no custom ControllerService interfaces will be

recognized. Having said that, you may be able to use the approach from the blog post in #1 to

do so.

Processors that always intend on using a Controller Service instance create a property (i.e.

PropertyDescriptor object) and call identifiesControllerService(class) on it. When the UI

component is rendered, it will find all the Controller Services that implement the desired

interface, and under-the-hood the component's ID is used, but its friendly name is displayed

to the user.

For ExecuteScript, we can let the user choose a Controller Service instance by letting them

specify the name or ID. If we allow the user to specify the name, then the script will have to

perform a lookup trying to match the name to a (single!) element in the list of Controller

Service instances of that type. That technique is described in the blog post above, so I won't

cover it here. If the user enters the ID of the instance, then it is much easier to get access to

the object as we will see below. The examples will use a DistributedMapCacheClientService

instance called "distMapClient", connecting to a DistributedMapCacheServer instance (with

standard defaults, localhost:4557), where the client instance has an ID of 93db6734-0159-

1000-b46f-78a8af3b69ed:

Logbot ETL User Guide – v2.0

© Logbot 2021 157

In the ExecuteScript config, a dynamic property is created, called "clientServiceId" and set to

93db6734-0159-1000-b46f-78a8af3b69ed:

We can then use clientServiceId.asControllerService(DistributedMapCacheClient), where the

parameter is a reference to the Class object for DistributedMapCacheClient. For the

examples, I have pre-populated the cache with a String key 'a' set to the String value 'hello'.

For a handy Groovy script to work with a DistributedMapCacheServer, check out my article

here.

Once we have a DistributedMapCacheClient instance, then to retrieve a value we can call its

get(key, serializer, deserializer) method. In our case since the keys and values are Strings, we

just need an instance of Serializer<String> and Deserializer<String> to pass into the get()

method. The approach for all the languages is similar to the creation of the StreamCallback

instances described in Part 2 of this article series. The examples will get the value for key 'a'

from the pre-populated server and log the result ("Result = hello")

Recipe: Get the value of a property stored in a DistributedMapCacheServer

https://community.hortonworks.com/articles/71837/working-with-a-nifi-distributedmapcache.html
https://community.hortonworks.com/articles/71837/working-with-a-nifi-distributedmapcache.html

Logbot ETL User Guide – v2.0

© Logbot 2021 158

Use Case: A user has populated values into a DistributedMapCacheServer (configuration

data, e.g.) and the script wants access to them.

Approach: Use the approach described above, creating a StringSerializer and

StringDeserializer object, then getting the DistributedMapCacheClientService instance by ID,

then calling get() on the service. Logging of the result is included here for convenience.

Examples:

Javascript

var DistributedMapCacheClient =
Java.type('org.apache.nifi.distributed.cache.client.DistributedMapCa
cheClient');

var Serializer =
Java.type('org.apache.nifi.distributed.cache.client.Serializer');

var Deserializer =
Java.type('org.apache.nifi.distributed.cache.client.Deserializer');

var StandardCharsets =
Java.type('java.nio.charset.StandardCharsets');

var StringSerializer = new Serializer(function(value, out) {

 out.write(value.getBytes(StandardCharsets.UTF_8));

})

var StringDeserializer = new Deserializer(function(arr) {

 // For some reason I had to build a string from the character
codes in the "arr" array

 var s = "";

 for(var i = 0; i < arr.length; i++) {

 s = s + String.fromCharCode(arr[i]);

 }

 return s;

Logbot ETL User Guide – v2.0

© Logbot 2021 159

})

var myDistClient =
clientServiceId.asControllerService(DistributedMapCacheClient.class)
;

var result = myDistClient.get('a', StringSerializer,
StringDeserializer);

log.info("Result = "+ result);

Logbot ETL User Guide – v2.0

© Logbot 2021 160

Running SQL on FlowFiles using QueryRecord Processor

This tutorial walks you through a NiFI flow that utilizes the QueryRecord processor

and Record Reader/Writer controller services to convert a CVS file into JSON format and

then query the data using SQL.

QueryRecord Flow Demo Configuration

Support Files

Here is a template of the flow discussed in this tutorial: queryrecord-csvtojson.xml

Here is the CSV file used in the flow: users.txt (Change the extension from .txt to .csv after

downloading)

Note: The CSV data originated from the site, RandomUser. This useful site provides a free

API to pull down randomly generated user data. For

example: https://randomuser.me/api/0.6/?results=10&format=SQL.

Import Template

Start Logbot ETL. Import the provided template and add it to the canvas.

You should see the following flow on your Logbot ETL canvas:

Enable Controller Services

Select the gear icon from the Operate Palette:

https://community.cloudera.com/t5/Community-Articles/Running-SQL-on-FlowFiles-using-QueryRecord-Processor-Apache/ta-p/246671
https://community.cloudera.com/legacyfs/online/attachments/27400-queryrecord-csvtojson.xml
https://community.cloudera.com/legacyfs/online/attachments/27401-users.txt
https://randomuser.me/
https://randomuser.me/api/0.6/?results=10&format=SQL

Logbot ETL User Guide – v2.0

© Logbot 2021 161

This opens the Logbot ETL Flow Configuration window. Select the Controller Services tab:

Enable AvroSchemaRegistry by selecting the lightning bolt icon/button. This will then allow

you to enable the CSVReader and JSONRecordSetWriter controller services. Select the

lightning bolt icons for both of these services. All the controller services should be enabled at

this point:

Logbot ETL User Guide – v2.0

© Logbot 2021 162

Update Directory Path in GetFile Processor

Change the Input Directory path in the GetFile processor to point to your local input

directory:

The flow is now ready to run.

Flow Overview

Here is a quick overview of the flow:

1. GetFile ingests a CSV file of user data from a local directory

2. UpdateAttribute adds Schema Name "users" as an attribute to the flowfile

3. QueryRecord converts the flowfile contents from CSV to JSON by:

 Using a CSVReader controller service that references a schema in an

AvroSchemaRegistry controller service

Logbot ETL User Guide – v2.0

© Logbot 2021 163

 The AvroSchemaRegistry contains a "users" schema which defines information about

each record (field names, field ids, field types)

 Using a JsonRecordSetWriter controller service that references the same

AvroSchemaRegistry schema

4. QueryRecord queries the flowfile using SQL:

 The "female" property uses SQL to select rows from the data where gender = 'F'

 The "male" property uses SQL to selects rows from the data where gender = 'M'

5. The female and male user data are sent to UpdateAttribute processors to provide a simple

place to hold the data.

Flow Details

Let's look at each of the processors in the flow in detail:

Get CSV File (GetFile Processor)

FlowFiles are generated from the users.csv file in the local directory. Start the processor:

One flowfile is generated with the CSV data as the contents. Right click on the connection

between the GetFile Processor and the UpdateAttribute Processor. In the context menu, select

"List Queue" and click the View Details button ("i" icon):

Logbot ETL User Guide – v2.0

© Logbot 2021 164

From the FlowFile window that opens, select the "View" button from the Details tab:

to view the CSV contents of the flowfile:

Logbot ETL User Guide – v2.0

© Logbot 2021 165

Note that there are 10 total users.

Add Schema Name Attribute (UpdateAttribute Processor)

The next step in the flow is an UpdateAttribute processor which adds the schema.name

attribute with the value of "users" to the flowfile:

Start the processor, and view the attributes of the flowfile to confirm this:

Logbot ETL User Guide – v2.0

© Logbot 2021 166

QueryRecord Processor

The next processor, QueryRecord, allows users to write SQL SELECT statements to run over

their data as it streams through the system. Each FlowFile is treated as if it were a database

table named FLOWFILE. Multiple SQL queries can be added to the processor. Looking at

the configuration:

Record Reader is set to "CSVReader" and Record Writer is set to "JsonRecordSetWriter".

The "CSVReader" controller service parses the incoming CSV data and determines the data's

schema. The "JsonRecordSetWriter" controller service determines the data's schema and

writes that data into JSON. More details about these controller services can be found below.

In order to distinguish the results of each query and route the data appropriately, the name of

the property is the name of the Relationship that data matching the query should be routed to.

Logbot ETL User Guide – v2.0

© Logbot 2021 167

The first added property is named "female" and will include user data where the gender of the

user is "F":

 SELECT *

 FROM FLOWFILE

 WHERE gender = 'F'

(NOTE: When entering a value for a property in Logbot ETL, you can use Shift + Enter to

insert a newline in your value.)

The second property is named "male" and will include user data where the gender of the user

is "M":

 SELECT *

 FROM FLOWFILE

 WHERE gender = 'M'

CSVReader Controller Service

Select the arrow icon next to the "CSV Reader" which opens the Controller Services list in

the Logbot ETL Flow Configuration. "CSVReader" should be highlighted in the list. Select

the View Details button ("i" icon) to see the properties:

With Schema Access Strategy property set to "Use 'Schema Name' Property", the reader

specifies the schema expected in an attribute, which in this flow is schema.name. The

Schema Registry property is set to the AvroSchemaRegistry Controller Service which defines

Logbot ETL User Guide – v2.0

© Logbot 2021 168

the "users" schema. Select the arrow icon next to "AvroSchemaRegistry" and select the View

Details button ("i" icon) to see its properties:

JsonRecordSetWriter Controller Service

Close the window for the AvroSchemaRegistry. Select the View Details button ("i" icon)

next to the "JsonRecordSetWriter" controller service to see its properties:

Schema Write Strategy is set to "Set 'schema.name' Attribute", Schema Access Strategy

property is set to "Use 'Schema Name' Property" and Schema Registry is set to

AvroSchemaRegistry.

Start the QueryRecord processor. The flowfile is now split into two flowfiles:

Logbot ETL User Guide – v2.0

© Logbot 2021 169

Looking at the contents of the "female" connection confirms the expected results of 6 female

users in JSON format:

Looking at the contents of the "male" connection confirms the expected results of 4 male

users in JSON format:

Logbot ETL User Guide – v2.0

© Logbot 2021 170

1

The SQL queries in the flow are very basic for the purposes of this tutorial. The beauty of the

QueryRecord processor is that it supports the SQL for more advanced queries and operations,

such as filtering specific columns/rows/fields from your data, renaming those

columns/rows/fields, performing calculations and aggregations on the data.

	Introduction
	Terminology
	Logbot ETL User Interface
	Building a DataFlow
	Adding Components to the Canvas
	Component Versions
	Sorting and Filtering Components
	Changing Component Versions
	Understanding Version Dependencies

	Configuring a Processor
	Settings Tab
	Scheduling Tab
	Scheduling Strategy
	Concurrent Tasks
	Run Schedule
	Execution
	Run Duration

	Properties Tab
	Comments Tab
	Additional Help

	Configuring a Process Group
	General Tab
	FlowFile Concurrency
	Outbound Policy
	Connecting Batch-Oriented Process Groups
	Caveats

	Controller Services

	Parameters
	Parameter Contexts
	Creating a Parameter Context

	Adding a Parameter to a Parameter Context
	Parameters and Expression Language
	Assigning a Parameter Context to a Process Group
	Referencing Parameters
	Parameter Reference Syntax
	Referencing and Creating Parameters During Component Configuration
	Using Parameters with Sensitive Properties

	Accessing Parameters

	Using Custom Properties with Expression Language
	Variables
	Variables Window
	Creating a Variable
	Variable Scope

	Controller Services
	Adding Controller Services for Reporting Tasks
	Adding Controller Services for Dataflows
	Enabling/Disabling Controller Services

	Reporting Tasks
	Connecting Components
	Details Tab
	Settings
	FlowFile Expiration
	Back Pressure
	Load Balancing
	Load Balance Strategy
	Load Balance Compression
	Load Balance Indicator
	Cluster Connection Summary

	Prioritization

	Changing Configuration and Context Menu Options
	Bending Connections

	Processor Validation
	Site-to-Site
	Configure Site-to-Site client Logbot ETL instance
	Configure Site-to-Site Server Logbot ETL Instance

	Example Dataflow

	Command and Control of the DataFlow
	Starting a Component
	Stopping a Component
	Terminating a Component’s tasks
	Enabling/Disabling a Component
	Remote Process Group Transmission
	Individual Port Transmission

	Navigating within a DataFlow
	Component Linking
	Component Alignment
	Align Vertically
	Align Horizontally

	Search Components in DataFlow
	Filters
	Keywords

	Monitoring of DataFlow
	Anatomy of a Processor
	Anatomy of a Process Group
	Anatomy of a Remote Process Group
	Queue Interaction
	Summary Page
	Historical Statistics of a Component

	Templates
	Creating a Template
	Importing a Template
	Instantiating a Template
	Managing Templates
	Exporting a Template
	Removing a Template

	Data Provenance
	Provenance Events
	Searching for Events
	Details of an Event
	Replaying a FlowFile
	Viewing FlowFile Lineage
	Find Parents
	Expanding an Event

	Experimental Warning
	Other Management Features
	Build your first Dataflow
	Logbot ETL components
	Create a data flow
	Learn about Logbot ETL processors
	See what processors are available
	Get more information for a processor
	Work with attributes

	Work with data flow templates
	Create a template
	Download a template
	Upload a template
	Use a template
	Manage templates

	Examples
	ExecuteScript Processor
	Introduction
	Recipes

	Introduction to FlowFile I/O
	Recipes

	Advanced Features
	Dynamic Properties
	State Management
	Accessing Controller Services

	Running SQL on FlowFiles using QueryRecord Processor
	QueryRecord Flow Demo Configuration
	Support Files
	Import Template
	Enable Controller Services
	Update Directory Path in GetFile Processor

	Flow Overview
	Flow Details
	QueryRecord Processor
	CSVReader Controller Service
	JsonRecordSetWriter Controller Service

